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Abstract

For the large sparse block two-by-two real nonsingular matrices, we establish a gen-
eral framework of practical and efficient structured preconditioners through matrix trans-
formation and matrix approximations. For the specific versions such as modified block
Jacobi-type, modified block Gauss-Seidel-type, and modified block unsymmetric (symmet-
ric) Gauss-Seidel-type preconditioners, we precisely describe their concrete expressions and
deliberately analyze eigenvalue distributions and positive definiteness of the preconditioned
matrices. Also, we show that when these structured preconditioners are employed to pre-
condition the Krylov subspace methods such as GMRES and restarted GMRES, fast and
effective iteration solvers can be obtained for the large sparse systems of linear equations
with block two-by-two coefficient matrices. In particular, these structured preconditioners
can lead to efficient and high-quality preconditioning matrices for some typical matrices from
the real-world applications.

Keywords: Block Two-by-Two Matrix, Preconditioner, Modified Block Relaxation It-
eration, Eigenvalue Distribution, Positive Definiteness.

AMS(MOS) Subject Classifications: 65F10, 65F50; CR: G1.3.

1 Introduction

Let R
n represent the real n-dimensional vector space, and R

n×n the real n × n matrix space.
Consider iterative solution of the large sparse system of linear equations

Ax = b, A ∈ R
n×n nonsingular and x, b ∈ R

n. (1.1)

In this paper, we will study algorithmic constructions and theoretical properties of practical and
efficient structured preconditioners to the matrix A ∈ R

n×n which is of the block two-by-two
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structure

A =

[
B E
F C

]
, (1.2)

where B ∈ R
p×p nonsingular, C ∈ R

q×q, E ∈ R
p×q and F ∈ R

q×p, with p ≥ q, such that
A ∈ R

n×n is nonsingular. Evidently, when the matrix block B is nonsingular, the matrix A is
nonsingular if and only if its Schur complement SA = C − FB−1E is nonsingular.

Linear systems of the form (1.1)-(1.2) arise in a variety of scientific and engineering applica-
tions, including computational fluid dynamics[21, 23, 26], mixed finite element approximation
of elliptic partial differential equations [16, 38], optimization[25, 30, 34], optimal control[13],
weighted and equality constrained least squares estimation[14], stationary semiconductor device[36,
42, 43], structural analysis[44], electrical networks[44], inversion of geophysical data[31], and so
on.

As we have known, preconditioned Krylov subspace methods[40] are efficient iterative solvers
for the system of linear equations (1.1)-(1.2), and effective and high-quality preconditioners play
a crucial role to guarantee their fast convergence and economical costs. A number of structured
preconditioners have been studied in the literature for some special cases of the block two-by-
two matrix A in (1.2). Besides specialized incomplete factorization preconditioners[17, 18] we
mention, among others, algebraic multilevel iteration preconditioners[2, 3, 4, 5, 12], block and
approximate Schur complement preconditioners[21, 23], splitting iteration preconditioners[15,
19, 22, 28, 29, 39, 45], block definite and indefinite preconditioners [24, 34, 38, 10], and block
triangular preconditioners[35, 37, 10]. Theoretical analyses and experimental results have shown
that these preconditioners may lead to nicely clustered eigenvalue distributions of the precon-
ditioned matrices and, hence, result in fast convergence of the preconditioned Krylov subspace
iteration methods for solving the large sparse system of linear equations (1.1)-(1.2). However,
exact inversions of the matrix block B or C, as well as the Schur complement SA, are demanded
for most of these preconditioners, which makes them less practical and effective in actual appli-
cations.

In this paper, by sufficiently utilizing the matrix structure and property, we first establish a
general framework of a class of practical and efficient structured preconditioners to the matrix
A ∈ R

n×n in (1.2) through matrix transformation and several steps of matrix approximations;
these preconditioners can avoid the exact inversions of the matrix blocks B and C, as well as
the Schur complement SA, and cover the known preconditioners mentioned previously as special
cases. Then, with this framework we further present a family of practical and efficient precon-
ditioners by technically combining it with the modified block relaxation iterations[6, 7], which
includes the modified block Jacobi-type, the modified block Gauss-Seidel-type and the modified
block unsymmetric (symmetric) Gauss-Seidel-type preconditioners as typical examples. More-
over, we particularly discuss the eigenvalue distributions and the positive definiteness of the
preconditioned matrices with respect to the modified block Jacobi-, the modified block Gauss-
Seidel-, and the modified block unsymmetric (symmetric) Gauss-Seidel-type preconditioners to
the block two-by-two matrix A, and deliberately address the applications of these precondi-
tioners to three classes of real-world matrices, i.e., the symmetric positive definite matrix, the
saddle point matrix and the Hamiltonian matrix. Besides, we show that when these structured
preconditioners are employed to precondition the Krylov subspace methods such as GMRES or
restarted GMRES, fast and effective iteration solvers can be obtained for the large sparse system
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of linear equations (1.1)-(1.2).

The organization of this paper is as follows. After establishing the general framework of
the structured preconditioners in Section 2, we present the modified block splitting iteration
preconditioners and study the eigenvalue distributions and the positive definiteness of the cor-
responding preconditioned matrices in Section 3; connections of these preconditioners to Krylov
subspace iteration methods are also briefly discussed in this section. Specifications of these
preconditioners to three classes of real-world matrices are investigated in Section 4. Finally, in
Section 5, we use a brief conclusion and several remarks to end the paper.

2 General Framework of the Structured Preconditioners

The construction of our structured preconditioners basically includes the following three steps:
Firstly, seek two nonsingular block two-by-two matrices P,Q ∈ R

n×n such that P and Q are
easily invertible and A = PHQ holds for a block two-by-two matrix H ∈ R

n×n of certain good
properties; Secondly, approximate the matrix H by another block two-by-two matrix W ∈ R

n×n

by dropping some higher-order small block quantities; And thirdly, approximate the matrix W
further by another block two-by-two matrix W ∈ R

n×n that is also easily invertible. Then, the
resulting preconditioners are of the form M = PWQ. See [9, 11].

Let LB, RB ∈ R
p×p and LC , RC ∈ R

q×q be nonsingular matrices such that

L−1
B BR−1

B = JB and L−1
C CR−1

C = JC , (2.1)

or equivalently,

B = LBJBRB and C = LCJCRC , (2.2)

where JB ∈ R
p×p is a matrix approximating to the identity matrix IB ∈ R

p×p, and JC ∈ R
q×q

is a matrix approximating to the identity matrix IC ∈ R
q×q when it is positive definite and

approximating to −IC ∈ R
q×q when it is negative definite. For simplicity, in the sequel we will

abbreviate the identity matrices IB and IC as I, with its dimension being inferred from the
context.

Evidently, LB, RB and LC , RC can be considered as split preconditioners to the matrix blocks
B and C, respectively, whose preconditioning properties can be measured by the approximation
degrees of the matrices JB and ±JC to the identity matrix I. There are many possible choices
of the matrices LB , RB and LC , RC . For example, they may be the incomplete lower-upper
triangular factors[2, 40], the incomplete orthogonal triangular factors[8], the approximate inverse
preconditioners[40], the splitting iteration matrices[2, 6, 7, 27], the multigrid or the algebraic
multilevel approximations[2, 3, 4, 5, 12], or even technical combinations of the abovementioned
matrices, to the matrix blocks B and C, respectively.

In particular, when C ∈ R
q×q is singular, besides the possible choices mentioned above, we

may choose LC and RC according to the following cases:

(i) if C is a symmetric positive semidefinite matrix, we may let LC = RC = I. Hence, JC = C
is also symmetric positive semidefinite;

(ii) if C is a symmetric negative semidefinite matrix, we may let LC = −I and RC = I (or
LC = I and RC = −I). Hence, JC = −C is symmetric positive semidefinite. Or we may
let LC = RC = I. Hence, JC = C is also symmetric negative semidefinite;
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(iii) if C is a general singular matrix, we may let LC = RC = I. Hence, JC = C is also singular.

To construct a high-quality structured preconditioner to the block two-by-two matrix A ∈
R

n×n, we introduce matrices

DL =

[
LB O
O LC

]
, DR =

[
RB O
O RC

]

and

E = L−1
B ER−1

C , F = L−1
C FR−1

B , (2.3)

where O denotes the zero matrix. Then from (2.2) we have

A =

[
B E
F C

]
=

[
LBJBRB E

F LCJCRC

]

=

[
LB O
O LC

] [
JB L−1

B ER−1
C

L−1
C FR−1

B JC

] [
RB O
O RC

]

:= DLADR,

where

A :=

[
JB E
F JC

]
.

Furthermore, we can find a unit lower triangular matrix L ∈ R
n×n and a unit upper triangular

matrix U ∈ R
n×n of block two-by-two structures such that H = LAU is block-diagonally

dominant as far as possible, and may also possess some other desired good properties.

In fact, if we let

L =

[
I O

L21 I

]
and U =

[
I U12

O I

]
,

then by concrete computations we obtain

H =

[
H11 H12

H21 H22

]
:= LAU

=

[
I O

L21 I

] [
JB E
F JC

] [
I U12

O I

]

with
{

H11 = JB , H12 = JBU12 + E,
H21 = L21JB + F , H22 = JC + L21JBU12 + L21E + FU12,

and

A = DLADR = DL(L−1HU−1)DR = (DLL−1)H(U−1DR) := PHQ
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with

P := DLL−1 =

[
LB O
O LC

] [
I O

−L21 I

]
=

[
LB O

−LCL21 LC

]
(2.4)

and

Q := U−1DR =

[
I −U12

O I

] [
RB O
O RC

]
=

[
RB −U12RC

O RC

]
. (2.5)

We can now choose the matrices L and U such that either of the following two principles is
satisfied as far as possible:

(P1) the matrix H is block-diagonally dominant and symmetric;

(P2) the matrix H is block-diagonally dominant and skew-symmetric.

Because if the matrix H satisfies either of the principles (P1) and (P2), we can easily construct
a good approximation to it, and hence, obtain a high-quality preconditioner M to the original
matrix A.

According to both (P1) and (P2), we can take L21 and U12 such that

{
H21 = L21JB + F ≈ (JBU12 + E)T = ±HT

12,
H21 = L21JB + F ≈ O.

Recalling that JB ≈ I, we can let

L21 = −F and U12 = −E.

Thus, for both cases, it follows from (2.4) and (2.5) that the matrices P and Q have the following
expressions:

P =

[
LB O

LCF LC

]
, Q =

[
RB ERC

O RC

]
. (2.6)

Therefore, for these choices of the matrices P and Q, we have

H =

[
JB (I − JB)E

F (I − JB) JC − FE − F (I − JB)E

]

≈
[

JB (I − JB)E
F (I − JB) JC − FE

]
:= W. (2.7)

Because the nonsingularity of the matrix A implies that the matrix A and its Schur comple-
ment S

A
:= JC − FJ−1

B E are nonsingular, and

JC − FE = SA + F (I − JB)J−1
B E (2.8)

and the Schur complement of W is

S
W

:= JC − FE − F (I − JB)J−1
B (I − JB)E = S

A
− F (I − JB)J−1

B E,
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we immediately know that when

‖I − JB‖2 < max

{
1

1 + ‖E‖2‖S−1
A

F‖2

,
1

1 + ‖ES−1
A

‖2‖F ‖2

}
, (2.9)

both matrices JC − FE and W are nonsingular.

Now, if we let W ∈ R
n×n be a nonsingular “replacement” of the matrix W , or in other words,

a “replacement” to the matrix H, then the matrix

M = PWQ (2.10)

is a natural preconditioner to the original matrix A ∈ R
n×n. And under the condition (2.9) this

preconditioner is well defined.

Note that here we use the term “replacement” other than “approximation”. This is because
sometimes we may choose the matrix W being not an approximation to W in the usual sense
so that the obtained preconditioner and the preconditioned matrix can possess some desired
properties such as positive definiteness and, hence, a specified Krylov subspace iteration method
may exploit its efficiency sufficiently.

If M is used as a left preconditioner to A, then

M−1A = (PWQ)−1(PHQ) = Q−1(W−1H)Q := Q−1KLQ (2.11)

with

KL = W−1H. (2.12)

Therefore, the preconditioning property of M to A is determined by the properties of the matrices
KL and Q. If M is used as a right preconditioner to A, then

AM−1 = (PHQ)(PWQ)−1 = P (HW−1)P−1 := PKRP−1 (2.13)

with

KR = HW−1. (2.14)

Therefore, the preconditioning property of M to A is determined by the properties of the matrices
KR and P . In general, if the matrix W admits a split form

W = WLWR, (2.15)

then (2.10) straightforwardly leads to a split preconditioner

M = (PWL)(WRQ) := MLMR, with ML = PWL and MR = WRQ, (2.16)

to the original matrix A. Because

M−1
L AM−1

R = (PWL)−1(PHQ)(WRQ)−1 = W−1
L HW−1

R := K, (2.17)

we see that the preconditioning property of M to A is determined by the property of the matrix
K.



Structured Preconditioners for Block Two-by-Two Nonsingular Matrices 7

Evidently, the matrices KL, KR and K are similar, and hence, they have exactly the same
spectrum. However, the eigenvectors of these kinds of preconditioned matrices are usually quite
different, which may lead to different performance results of the corresponding preconditioned
Krylov subspace iteration methods.

In actual applications, when the matrix M defined in (2.10) is employed as a preconditioner
to some Krylov subspace iteration method for solving the block two-by-two system of linear
equations (1.1), we need to solve a generalized residual equation of the form

Mz = r (2.18)

at each iteration step, where r is the current residual vector. By making use of the two-by-
two block structure of M , we can obtain the following practical procedure for computing the
generalized residual vector z = M−1r.

Procedure for computing the generalized residual vector. Let r = (rT
1 , rT

2 )T ,
z = (zT

1 , zT
2 )T and w = (wT

1 , wT
2 )T, with r1, z1, w1 ∈ R

p and r2, z2, w2 ∈ R
q.

1. Solve LBt1 = r1 and LCt2 = r2 to get t1 and t2, and let t2 := t2 + Ft1;

2. Solve Ww = t to get w, with t = (tT
1 , tT2 )T;

3. Solve RCz2 = w2 and RBz1 = w1 − Ew2 to get z1 and z2.

When the approximation matrix W ∈ R
n×n to the matrix W ∈ R

n×n is specified, a con-
crete procedure for computing the generalized residual vector z ∈ R

n defined by (2.18) can be
straightforwardly obtained from this procedure.

Usually, the matrix W ∈ R
n×n may involve information about the matrices JB , JC , E and

F . Therefore, to solve the linear system Ww = t we may need to compute the vectors

{
w1 = JBw1 = L−1

B BR−1
B w1, w̃1 = Fw1 = L−1

C FR−1
B w1,

w2 = JCw2 = L−1
C CR−1

C w2, w̃2 = Ew2 = L−1
B ER−1

C w2.

These vectors can be economically computed by the following formulas:

1. Solve RBt1 = w1;

2. Solve LBw1 = Bt1, LCw̃1 = Ft1;

3. Solve RCt2 = w2;

4. Solve LCw2 = Ct2, LBw̃2 = Et2.

3 Several Practical Structured Preconditioners

In this section, we will construct three classes of structured approximations W to the block
two-by-two matrix W , or in other words, to the block two-by-two matrix H in (2.7), by mak-
ing use of the modified block Jacobi, the modified block Gauss-Seidel and the modified block
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unsymmetric Gauss-Seidel splittings of W . See [6, 7] for details. Therefore, three types of struc-
tured preconditioners to the original block two-by-two matrix A ∈ R

n×n, called as the modified
block Jacobi-type (MBJ-type) preconditioner, the modified block Gauss-Seidel-type (MBGS-
type) preconditioner and the modified block unsymmetric Gauss-Seidel-type (MBUGS-type)
preconditioner, can be obtained, correspondingly.

To analyze the spectral property of the preconditioned matrices with respect to the above-
mentioned preconditioners, we need the following two basic facts.

Lemma 3.1 Let L ∈ R
(p+q)×(p+q) and U ∈ R

(p+q)×(p+q) be unit lower and upper triangular
matrices of the block two-by-two forms

L =

[
I O

L21 I

]
and U =

[
I U12

O I

]
,

where L21 ∈ R
q×p and U12 ∈ R

p×q. Let

γ(t) =

[
1 +

1

2
t
(
t +

√
t2 + 4

)] 1

2

(3.1)

be a monotone increasing function with respect to t in the interval [0,+∞). Then it holds that

‖L‖2 = γ(‖L21‖2) and ‖U‖2 = γ(‖U12‖2).

Proof. By direct computations we have

LTL =

[
I LT

21

O I

] [
I O

L21 I

]
=

[
I + LT

21L21 LT
21

L21 I

]
.

Without loss of generality, we assume p ≥ q. From Theorem 2.5.2 in [27, page 70] we know that
the matrix L21 admits a singular value decomposition (SVD), i.e., there exist two orthogonal ma-
trices V1 ∈ R

q×q and V2 ∈ R
p×p and a matrix Σ̃ = [Σ, O] ∈ R

q×p, with Σ = diag(σ1, σ2, . . . , σq) ∈
R

q×q being a nonnegative diagonal matrix having the maximum diagonal entry σ1 = ‖L21‖2,
such that L21 = V T

1 Σ̃V2 holds. Define

V =

[
V2 O
O V1

]
.

Then V is an orthogonal matrix, too. It follows from concrete computations that

LT L = V T




I + Σ2 O Σ
O I O
Σ O I


 V.

Therefore, detailed analysis shows that the eigenvalues of the matrix LT L are 1 with multiplicity
p − q, and

1 +
1

2
σk

(
σk ±

√
σ2

k + 4

)
, k = 1, 2, . . . , q.
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It then follows straightforwardly that the spectral radius of the matrix LT L, say ρ(LT L), is
given by

ρ(LT L) = 1 +
1

2
σ1

(
σ1 +

√
σ2

1 + 4

)

= 1 +
1

2
‖L21‖2

(
‖L21‖2 +

√
‖L21‖2

2 + 4

)
,

and therefore,

‖L‖2 = ρ(LT L)
1

2 =

[
1 +

1

2
‖L21‖2

(
‖L21‖2 +

√
‖L21‖2

2 + 4

)] 1

2

= γ(‖L21‖2).

The proof of the second equality can be demonstrated in a similar fashion. 2

We remark that for the real one-variable function γ(t) defined by (3.1), the estimate γ(t) ≤ t+1
holds for all t ∈ [0,+∞) because of

√
t2 + 4 ≤ t + 2 and

√
t2 + t + 1 ≤ t + 1.

Lemma 3.2 Let Λ = diag(λ1, λ2, . . . , λn) ∈ C
n×n be a diagonal matrix, and Y ∈ C

n×n a given
matrix, where C

n×n represents the complex n×n matrix space. If there exists a positive constant
ρy such that ‖Λ−Y ‖2 ≤ ρy, then all eigenvalues of the matrix Y are located within ∪n

i=1N (λi, ρy),
where N (λi, ρy) denotes the circle having center λi and radius ρy on the complex plane.

Proof. Let λ be an eigenvalue of the matrix Y ∈ C
n×n and v be the corresponding normalized

eigenvector. Then we have (Λ − Y )v = (Λ − λI)v. Hence,

‖(Λ − λI)v‖2 = ‖(Λ − Y )v‖2 ≤ ‖Λ − Y ‖2 ≤ ρy.

It then follows that ‖Λ − λI‖2 ≤ ρy. Therefore, it holds that |λ − λi| ≤ ρy (i = 1, 2, . . . , n), or
equivalently, λ ∈ ∪n

i=1N (λi, ρy). 2

For the simplicity of our statements, in the sequel we always use γ : (0,+∞) → (0,+∞) to
represent the function defined by (3.1). For the matrices JB in (2.1) and E, F in (2.3), we write

∆1 = F (I − JB)E and ∆2 = F (I − JB)2E,

and denote the (2, 2)-block entry of the matrix W in (2.7) by S, i.e.,

S = JC − FE. (3.2)

Assume W and S be nonsingular, let S be a nonsingular matrix that is a replacement to S (e.g.,
S = ±(I − FE) or S = ±(I − diag(FE)), etc.), and define the quantities

Θ = ‖E‖2, Γ = ‖F‖2, Θs = ‖ES−1‖2, Γs = ‖S−1F‖2.

In addition, in the case that S is an approximation to S, we define the quantities

εL = max{‖I − JB‖2, ‖I − S−1S‖2}, εR = max{‖I − JB‖2, ‖I − SS−1‖2};

and in the case that S is an approximation to −S, instead of εL and εR we use the quantities

ε̃L = max{‖I − JB‖2, ‖I + S−1S‖2}, ε̃R = max{‖I − JB‖2, ‖I + SS−1‖2}.
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For two positive constants ρ
(ξ)
L and ρ

(ξ)
R to be specified later, we use N (ξ) to denote the circle

having center (1, 0) and radius ρ(ξ) := min{ρ(ξ)
L εL, ρ

(ξ)
R εR}, and use Ñ (ξ) to denote the union of

the two circles having centers (−1, 0) and (1, 0) and radius ρ̃(ξ) := min{ρ(ξ)
L ε̃L, ρ

(ξ)
R ε̃R}, on the

complex plane, respectively.

By making use of the above notations, the nonsingularity of the matrices S and W can be
precisely described by the following lemma.

Lemma 3.3 The matrices S and W are nonsingular, provided either of the following conditions
holds:

(1) S is an approximation to S, and

(a) εL < 1 + ΘΓs −
√

ΘΓs(ΘΓs + 2), or

(b) εR < 1 + ΘsΓ −
√

ΘsΓ(ΘsΓ + 2);

(2) S is an approximation to −S, and

(a) ε̃L < 1 + ΘΓs −
√

ΘΓs(ΘΓs + 2), or

(b) ε̃R < 1 + ΘsΓ −
√

ΘsΓ(ΘsΓ + 2).

Proof. We only prove (1a), as the other conclusions can be demonstrated analogously.

Because ‖I − JB‖2 ≤ εL < 1, it holds that

‖J−1
B ‖2 = ‖[I − (I − JB)]−1‖2 ≤ 1

1 − ‖I − JB‖2
.

From (2.8) we have

SA = S − F (I − JB)J−1
B E.

Hence,

‖I − S−1SA‖2 ≤ ‖I − S−1S‖2 + ‖E‖2‖S−1F‖2 ·
‖I − JB‖2

1 − ‖I − JB‖2

≤
(

1 +
ΘΓs

1 − ‖I − JB‖2

)
· max{‖I − JB‖2, ‖I − S−1S‖2}

≤
(

1 +
ΘΓs

1 − εL

)
εL

< 1.

It then follows that

‖S−1
A

F‖2 ≤ ‖S−1F‖2

1 − ‖I − S−1SA‖2
≤ Γs(1 − εL)

(1 − εL)2 − ΘΓsεL

.

Now, we easily see that (2.9) holds when

εL <
1

1 + ΘΓs(1−εL)
(1−εL)2−ΘΓsεL

=
(1 − εL)2 − ΘΓsεL

(1 − εL)2 − ΘΓsεL + ΘΓs(1 − εL)
,
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or equivalently, ε2
L − 2(1 + ΘΓs)εL + 1 > 0. Therefore, when

εL < 1 + ΘΓs −
√

ΘΓs(ΘΓs + 2),

the matrices S and W are nonsingular. 2

We first consider the case that S ≈ S. The case that S ≈ −S will be discussed in Section 3.4.

3.1 The MBJ-type Preconditioners

If the matrix W ∈ R
n×n in (2.10) is taken to be the modified block Jacobi splitting matrix[6, 7]

of the matrix W in (2.7), i.e.,

W (J) := W =

[
I O
O S

]
, (3.3)

then we obtain the modified block Jacobi-type (MBJ-type) preconditioner M = PW (J)Q to
the original matrix A ∈ R

n×n. Note that when S ∈ R
q×q is symmetric positive definite, W (J) is

a symmetric positive definite matrix, and when S ∈ R
q×q is symmetric negative definite, W (J)

is a symmetric indefinite matrix.

The following theorem describes the eigenvalue distribution of the preconditioned matrix with
respect to the MBJ-type preconditioner.

Theorem 3.1 Let M = PW (J)Q be the MBJ-type preconditioner to the block two-by-two matrix
A = PHQ ∈ R

n×n in (1.2), where P and Q are given by (2.6), H is given by (2.7), and W (J)

is defined by (3.3). Denote by KL = W (J)−1

H and KR = HW (J)−1

, respectively. Then it holds
that

(i) ‖I − KL‖2 ≤ ρ
(J)
L εL, with ρ

(J)
L = γ(Θ) · γ(Γs); and

(ii) ‖I − KR‖2 ≤ ρ
(J)
R εR, with ρ

(J)
R = γ(Θs) · γ(Γ).

It follows from Lemma 3.2 as well as (2.11) and (2.13) that the eigenvalues of the matrices

M−1A and AM−1 are located within a circle having center (1, 0) and radii ρ
(J)
L εL and ρ

(J)
R εR,

respectively, and therefore, they are all within the circle N (J).

Proof. We only prove (i), as (ii) can be verified analogously.

From (2.7) and (3.3) we have

KL = W (J)−1

H =

[
JB (I − JB)E

S−1F (I − JB) S−1S − S−1∆1

]
.

Hence,

I − KL =

[
I O

−S−1F I

] [
I − JB O

O I − S−1S

] [
I −E
O I

]
.
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By making use of Lemma 3.1 we can immediately obtain

‖I − KL‖2 ≤ γ(‖S−1F‖2) · γ(‖E‖2) · max{‖I − JB‖2, ‖I − S−1S‖2}
= γ(Θ) · γ(Γs) · max{‖I − JB‖2, ‖I − S−1S‖2}
= ρ

(J)
L εL.

2

Furthermore, when the matrix JB is positive definite, we can demonstrate the positive defi-
niteness of the matrices KL = W (J)−1

H and KR = HW (J)−1

.

Theorem 3.2 Let the matrix JB be positive definite. Then

(i) the matrix KL = W (J)−1

H is positive definite, provided εL < δ
(J)
L , where

δ
(J)
L =

2
(
ΘΓs + 2 −

√
Θ2Γ2

s + (Θ + Γs)2
)

4 − (Θ − Γs)2
< 1;

(ii) the matrix KR = HW (J)−1

is positive definite, provided εR < δ
(J)
R , where

δ
(J)
R =

2
(
ΘsΓ + 2 −

√
Θ2

sΓ
2 + (Θs + Γ)2

)

4 − (Θs − Γ)2
< 1.

Proof. We only prove the validity of (i), as (ii) can be demonstrated similarly.

Some straightforward computations immediately show that δ
(J)
L < 1. Denote by

T =

[
T11 T12

T21 T22

]
≡ 1

2
(KL + KT

L ).

Then from the proof of Theorem 3.1 we easily obtain





T11 = 1
2(JB + JT

B ),

T12 = 1
2 [(I − JB)E + (I − JT

B )F
T
S−T ],

T21 = 1
2 [S−1F (I − JB) + E

T
(I − JT

B )],

T22 = 1
2 [S−1S + S

T
S−T ] − 1

2 [S−1∆1 + ∆
T
1 S−T ].

Because JB is positive definite, we know that its symmetric part 1
2 (JB + JT

B ) is symmetric
positive definite. Therefore, the matrix T is symmetric positive definite if and only if so is its
Schur complement ST := T22 − T21T

−1
11 T12.

Since

‖I − T11‖2 ≤ ‖I − JB‖2 ≤ εL < δ
(J)
L < 1,

we have

‖T−1
11 ‖2 = ‖[I − (I − T11)]

−1‖2 ≤ 1

1 − ‖I − JB‖2
.
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By direct computations we immediately obtain

‖T12‖2 = ‖T21‖2 ≤ 1

2

(
‖S−1F ‖2‖I − JB‖2 + ‖ET ‖2‖I − JT

B‖2

)

=
1

2
(Θ + Γs)‖I − JB‖2

and

‖I − T22‖2 ≤ 1

2

(
‖I − S−1S‖2 + ‖I − S

T
S−T‖2

)

+
1

2

(
‖S−1∆1‖2 + ‖∆T

1 S−T ‖2

)

≤ ‖I − S−1S‖2 + ‖S−1F‖2‖E‖2‖I − JB‖2

≤ (1 + ΘΓs) · max{‖I − JB‖2, ‖I − S−1S‖2}
= (1 + ΘΓs)εL.

It then follows that

min
x6=0

〈x, ST x〉
〈x, x〉 ≥ 1 − max

x6=0

〈x, (I − T22)x〉
〈x, x〉 − max

x6=0

〈x, T21T
−1
11 T12x〉

〈x, x〉
≥ 1 − ‖I − T22‖2 − ‖T21T

−1
11 T12‖2

≥ 1 −
(

(1 + ΘΓs)εL +
(Θ + Γs)

2‖I − JB‖2
2

4(1 − ‖I − JB‖2)

)

≥ 1 −
(

1 + ΘΓs +
(Θ + Γs)

2

4(1 − ‖I − JB‖2)
· ‖I − JB‖2

)
εL

≥ 1 −
(

1 + ΘΓs +
(Θ + Γs)

2

4(1 − εL)
· εL

)
εL.

Noticing that

(
1 + ΘΓs +

(Θ + Γs)
2

4(1 − εL)
· εL

)
εL < 1

holds if and only if

4ΘΓsεL + (Θ − Γs)
2ε2

L < 4(1 − εL)2,

or equivalently,

εL <
2
(
ΘΓs + 2 −

√
Θ2Γ2

s + (Θ + Γs)2
)

4 − (Θ − Γs)2
,

we therefore know that minx6=0
〈x,ST x〉
〈x,x〉 > 0 holds true when εL < δ

(J)
L . Hence, ST is a symmetric

positive definite matrix, and KL is a positive definite matrix. 2
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3.2 The MBGS-type Preconditioners

If the matrix W ∈ R
n×n in (2.10) is taken to be the modified block Gauss-Seidel splitting

matrix[6, 7] of the matrix W in (2.7), i.e.,

W (GS) := W =

[
I O

F (I − JB) S

]
, (3.4)

then we obtain the modified block Gauss-Seidel-type (MBGS-type) preconditioner M = PW (GS)Q
to the original matrix A ∈ R

n×n.

The following theorem describes the eigenvalue distribution of the preconditioned matrix with
respect to the MBGS-type preconditioner.

Theorem 3.3 Let M = PW (GS)Q be the MBGS-type preconditioner to the block two-by-two
matrix A = PHQ ∈ R

n×n in (1.2), where P and Q are given by (2.6), H is given by (2.7),
and W (GS) is defined by (3.4). Denote by KL = W (GS)−1

H and KR = HW (GS)−1

, respectively.
Then it holds that

(i) ‖I − KL‖2 ≤ ρ
(GS)
L εL, with ρ

(GS)
L = γ(Θ) · γ(Γs‖I − JB‖2) · (1 + ΘΓs); and

(ii) ‖I − KR‖2 ≤ ρ
(GS)
R εR, with ρ

(GS)
R = γ(Θs) · γ(Γ‖I − JB‖2) · (1 + ΘsΓ).

It follows from Lemma 3.2 as well as (2.11) and (2.13) that the eigenvalues of the matrices

M−1A and AM−1 are located within a circle having center (1, 0) and radii ρ
(GS)
L εL and ρ

(GS)
R εR,

respectively, and therefore, they are all within the circle N (GS).

Proof. We only prove (i), as (ii) can be verified analogously.

From (2.7) and (3.4) we have

KL = W (GS)−1

H =

[
JB (I − JB)E

S−1F (I − JB)2 S−1S − S−1(∆1 + ∆2)

]
.

Hence,

I − KL =

[
I O

−S−1F (I − JB) I

] [
I − JB O

O I − S−1S + S−1∆1

] [
I −E
O I

]
.

By making use of Lemma 3.1 we can immediately obtain

‖I − KL‖2 ≤ γ(‖S−1F (I − JB)‖2) · γ(‖E‖2)

·max{‖I − JB‖2, ‖I − S−1S‖2 + ‖S−1F‖2‖E‖2‖I − JB‖2}
≤ γ(Θ) · γ(Γs‖I − JB‖2) · (1 + ΘΓs)

·max{‖I − JB‖2, ‖I − S−1S‖2}
= ρ

(GS)
L εL.

2

Furthermore, when the matrix JB is positive definite, we can demonstrate the positive defi-
niteness of the matrices KL = W (GS)−1

H and KR = HW (GS)−1

.
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Theorem 3.4 Let the matrix JB be positive definite. Then

(i) the matrix KL = W (GS)−1

H is positive definite, provided εL < δ
(GS)
L , where

δ
(GS)
L =

2
(
ΘΓs + 2 −

√
Θ2Γ2

s + 4ΘΓs + (Θ + Γs)2
)

4 − (Θ + Γs)2
< 1;

(ii) the matrix KR = HW (GS)−1

is positive definite, provided εR < δ
(GS)
R , where

δ
(GS)
R =

2
(
ΘsΓ + 2 −

√
Θ2

sΓ
2 + 4ΘsΓ + (Θs + (1 + ΘsΓ)Γ)2

)

4 − (Θs + (1 + ΘsΓ)Γ)2
< 1.

Proof. We only prove the validity of (i), as (ii) can be demonstrated similarly.

Some straightforward computations immediately show that δ
(GS)
L < 1. Denote by

T =

[
T11 T12

T21 T22

]
≡ 1

2
(KL + KT

L ).

Then from the proof of Theorem 3.3 we can easily obtain





T11 = 1
2(JB + JT

B ),

T12 = 1
2 [(I − JB)E + (I − JT

B )2F
T
S−T ],

T21 = 1
2 [S−1F (I − JB)2 + E

T
(I − JT

B )],

T22 = 1
2 [S−1S + S

T
S−T ] − 1

2 [S−1∆1 + ∆
T
1 S−T ] − 1

2 [S−1∆2 + ∆
T
2 S−T ].

Because JB is positive definite, we know that its symmetric part 1
2 (JB + JT

B ) is symmetric
positive definite. Therefore, the matrix T is symmetric positive definite if and only if so is its
Schur complement ST := T22 − T21T

−1
11 T12.

Since

‖I − T11‖2 ≤ ‖I − JB‖2 ≤ εL < δ
(GS)
L < 1,

we have

‖T−1
11 ‖2 = ‖[I − (I − T11)]

−1‖2 ≤ 1

1 − ‖I − JB‖2
.

By direct computations we immediately get

‖T12‖2 = ‖T21‖2 ≤ 1

2

(
‖S−1F (I − JB)2‖2 + ‖ET

(I − JT
B )‖2

)

≤ 1

2
(Θ + Γs‖I − JB‖2)‖I − JB‖2

and

‖I − T22‖2 ≤ 1

2

(
‖I − S−1S‖2 + ‖I − S

T
S−T ‖2

)
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+
1

2

(
‖S−1F (I − JB)E‖2 + ‖ET

(I − JT
B )F

T
S−T‖2

)

+
1

2

(
‖S−1F (I − JB)2E‖2 + ‖ET

(I − JT
B )2F

T
S−T ‖2

)

≤ ‖I − S−1S‖2 + ΘΓs(1 + ‖I − JB‖2)‖I − JB‖2

≤ [1 + ΘΓs(1 + ‖I − JB‖2)] · max{‖I − JB‖2, ‖I − S−1S‖2}
≤ [1 + ΘΓs(1 + εL)]εL.

It then follows that

min
x6=0

〈x, ST x〉
〈x, x〉 ≥ 1 − max

x6=0

〈x, (I − T22)x〉
〈x, x〉 − max

x6=0

〈x, T21T
−1
11 T12x〉

〈x, x〉
≥ 1 − ‖I − T22‖2 − ‖T21T

−1
11 T12‖2

≥ 1 − [1 + ΘΓs(1 + εL)]εL − (Θ + Γs‖I − JB‖2)
2‖I − JB‖2

2

4(1 − ‖I − JB‖2)

≥ 1 −
(

1 + ΘΓs(1 + εL) +
(Θ + ΓsεL)2

4(1 − εL)
· εL

)
εL.

Noticing that
(

1 + ΘΓs(1 + εL) +
(Θ + ΓsεL)2

4(1 − εL)
· εL

)
εL < 1

holds if and only if

4ΘΓs(1 − ε2
L)εL + (Θ + ΓsεL)2ε2

L < 4(1 − εL)2.

And this inequality holds when

4ΘΓsεL + (Θ + Γs)
2ε2

L < 4(1 − εL)2,

or equivalently,

εL <
2
(
ΘΓs + 2 −

√
Θ2Γ2

s + 4ΘΓs + (Θ + Γs)2
)

4 − (Θ + Γs)2
.

Therefore, we know that minx6=0
〈x,ST x〉
〈x,x〉 > 0 holds true when εL < δ

(GS)
L . Hence, ST is a

symmetric positive definite matrix, and KL is a positive definite matrix. 2

Alternatively, if the matrix W ∈ R
n×n in (2.10) is taken to be the modified block Gauss-Seidel

splitting matrix[6, 7] of the matrix W in (2.7), i.e.,

W (GS) := W =

[
I (I − JB)E
O S

]
, (3.5)

then we obtain another modified block Gauss-Seidel-type (MBGS-type) preconditioner M =
PW (GS)Q to the original matrix A ∈ R

n×n. Exactly following the demonstrations of Theo-
rems 3.3 and 3.4, we can obtain the following results for the eigenvalue distribution and the
positive definiteness of the preconditioned matrix with respect to the MBGS-type precondi-
tioner (3.5).
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Theorem 3.5 Let M = PW (GS)Q be the MBGS-type preconditioner to the block two-by-two
matrix A = PHQ ∈ R

n×n in (1.2), where P and Q are given by (2.6), H is given by (2.7),
and W (GS) is defined by (3.5). Denote by KL = W (GS)−1

H and KR = HW (GS)−1

, respectively.
Then it holds that

(i) ‖I − KL‖2 ≤ ρ
(GS)
L εL, with ρ

(GS)
L = γ(Θ‖I − JB‖2) · γ(Γs) · (1 + ΘΓs); and

(ii) ‖I − KR‖2 ≤ ρ
(GS)
R εR, with ρ

(GS)
R = γ(Θs‖I − JB‖2) · γ(Γ) · (1 + ΘsΓ).

It follows from Lemma 3.2 as well as (2.11) and (2.13) that the eigenvalues of the matrices

M−1A and AM−1 are located within a circle having center (1, 0) and radii ρ
(GS)
L εL and ρ

(GS)
R εR,

respectively, and therefore, they are all within the circle N (GS).

Theorem 3.6 Let the matrix JB be positive definite. Then

(i) the matrix KL = W (GS)−1

H is positive definite, provided εL < δ
(GS)
L , where

δ
(GS)
L =

2
(
ΘΓs + 2 −

√
Θ2Γ2

s + 4ΘΓs + (Γs + (1 + ΘΓs)Θ)2
)

4 − (Γs + (1 + ΘΓs)Θ)2
< 1;

(ii) the matrix KR = HW (GS)−1

is positive definite, provided εR < δ
(GS)
R , where

δ
(GS)
R =

2
(
ΘsΓ + 2 −

√
Θ2

sΓ
2 + 4ΘsΓ + (Θs + Γ)2

)

4 − (Θs + Γ)2
< 1.

3.3 The MBUGS-type Preconditioners

If the matrix W ∈ R
n×n in (2.10) is taken to be the modified block unsymmetric Gauss-Seidel

splitting matrix[6, 7] of the matrix W in (2.7), i.e.,

W (UGS) := W =

[
I (I − JB)E
O S

] [
I O
O S

]−1 [
I O

F (I − JB) S

]
, (3.6)

then we obtain the modified block unsymmetric Gauss-Seidel-type (MBUGS-type) precondi-
tioner M = PW (UGS)Q to the original matrix A ∈ R

n×n.

The following theorem describes the eigenvalue distribution of the preconditioned matrix with
respect to the MBUGS-type preconditioner.

Theorem 3.7 Let M = PW (UGS)Q be the MBUGS-type preconditioner to the block two-by-two
matrix A = PHQ ∈ R

n×n in (1.2), where P and Q are given by (2.6), H is given by (2.7), and
W (UGS) is defined by (3.6). Denote by KL = W (UGS)−1

H and KR = HW (UGS)−1

, respectively.
Then it holds that

(i) ‖I − KL‖2 ≤ ρ
(UGS)
L εL, with

ρ
(UGS)
L = γ(Γs‖I − JB‖2) · [γ(Θ‖I − JB‖2) + ΘΓs‖I − JB‖2] · (1 + ΘΓs); and
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(ii) ‖I − KR‖2 ≤ ρ
(UGS)
R εR, with

ρ
(UGS)
R = γ(Θs‖I − JB‖2) · [γ(Γ‖I − JB‖2) + ΘsΓ‖I − JB‖2] · (1 + ΘsΓ).

It follows from Lemma 3.2 as well as (2.11) and (2.13) that the eigenvalues of the matrices M −1A

and AM−1 are located within a circle having center (1, 0) and radii ρ
(UGS)
L εL and ρ

(UGS)
R εR,

respectively, and therefore, they are all within the circle N (UGS).

Proof. It is analogous to the proofs of Theorems 3.1 and 3.3, and is hence omitted. 2

Furthermore, when the matrix JB is positive definite, we can demonstrate the positive defi-
niteness of the matrices KL = W (UGS)−1

H and KR = HW (UGS)−1

.

Theorem 3.8 Let the matrix JB be positive definite. Then

(i) the matrix KL = W (UGS)−1

H is positive definite, provided εL < δ
(UGS)
L , where

δ
(UGS)
L =

2
(
ΘΓs + 2 −

√
Θ2Γ2

s + 4ΘΓs + (1 + ΘΓs)2(Θ + Γs)2
)

4 − (1 + ΘΓs)2(Θ + Γs)2
< 1;

(ii) the matrix KR = HW (UGS)−1

is positive definite, provided εR < δ
(UGS)
R , where

δ
(UGS)
R =

2
(
ΘsΓ + 2 −

√
Θ2

sΓ
2 + 4ΘsΓ + (1 + ΘsΓ)2(Θs + Γ)2

)

4 − (1 + ΘsΓ)2(Θs + Γ)2
< 1.

Proof. It is analogous to the proofs of Theorems 3.2 and 3.4, and is hence omitted. 2

Alternatively, if the matrix W (UGS) defined by (3.6) is considered to possess the split form

W (UGS) = W
(UGS)
L W

(UGS)
R , with

W
(UGS)
L =

[
I (I − JB)ES−1

O I

]
, W

(UGS)
R =

[
I O

F (I − JB) S

]
(3.7)

or

W
(UGS)
L =

[
I (I − JB)E
O S

]
, W

(UGS)
R =

[
I O

S−1F (I − JB) I

]
, (3.8)

then we can obtain other modified block unsymmetric Gauss-Seidel-type preconditioners M =

M
(UGS)
L M

(UGS)
R to the original matrix A ∈ R

n×n, where

M
(UGS)
L = PW

(UGS)
L and M

(UGS)
R = W

(UGS)
R Q,

and P and Q are given by (2.6). Exactly following the demonstrations of Theorems 3.7 and 3.8,
we can obtain the results about the eigenvalue distributions and the positive definiteness of the
preconditioned matrices with respect to the MBUGS-type preconditioners (3.7)-(3.8).

We remark that when F = E
T
, the above-discussed modified block unsymmetric Gauss-

Seidel-type preconditioners naturally reduce to the modified block symmetric Gauss-Seidel-type
(MBSGS-type) preconditioners to the matrix A ∈ R

n×n in (1.2), correspondingly.
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3.4 The Case S ≈ −S

In the case that S is negative definite, we may let S be an approximation to −S in order to
obtain a preconditioner of positive definiteness in nature. Hence, some specified preconditioned
Krylov subspace iteration method can exploit its efficiency sufficiently.

When S ≈ −S, for the MBJ-, the MBGS-, and the MBUGS-type preconditioners discussed
above, we can demonstrate that the eigenvalues of the preconditioned matrices are, correspond-
ingly, located within two circles having center (−1, 0) and (1, 0) in the complex plane. This
results are precisely summarized in the following theorem. Since their proofs are essentially the
same to those of Theorems 3.1, 3.3, 3.5 and 3.7 with only the identity matrix I being replaced
by the matrix

J :=

[
I O
O −I

]
, I ∈ R

p×p and − I ∈ R
q×q,

we only state the theorem but omit its proof.

Theorem 3.9 Let M = PWQ ∈ R
n×n in (2.10) be the preconditioner to the block two-by-two

matrix A = PHQ ∈ R
n×n in (1.2), with P and Q being given by (2.6) and H being given by

(2.7). Denote by KL = W−1H and KR = HW−1, respectively.

(i) If W = W (J) is defined by (3.3), then

‖J − KL‖2 ≤ ρ
(J)
L ε̃L, ‖J − KR‖2 ≤ ρ

(J)
R ε̃R,

where ρ
(J)
L and ρ

(J)
R are the same as in Theorem 3.1;

(ii) If W = W (GS) is defined by (3.4), then

‖J − KL‖2 ≤ ρ
(GS)
L ε̃L, ‖J − KR‖2 ≤ ρ

(GS)
R ε̃R,

where ρ
(GS)
L and ρ

(GS)
R are the same as in Theorem 3.3;

(iii) If W = W (GS) is defined by (3.5), then

‖J − KL‖2 ≤ ρ
(GS)
L ε̃L, ‖J − KR‖2 ≤ ρ

(GS)
R ε̃R,

where ρ
(GS)
L and ρ

(GS)
R are the same as in Theorem 3.5;

(iv) If W = W (UGS) is defined by (3.6), then

‖J − KL‖2 ≤ ρ
(UGS)
L ε̃L, ‖J − KR‖2 ≤ ρ

(UGS)
R ε̃R,

where ρ
(UGS)
L and ρ

(UGS)
R are the same as in Theorem 3.7.

It follows from Lemma 3.2 as well as (2.11) and (2.13) that the eigenvalues of the preconditioned
matrix M−1A are located within the union of two circles having centers (−1, 0) and (1, 0) and

radius ρ
(ξ)
L ε̃L, and those of the preconditioned matrix AM−1 are located within the union of two

circles having centers (−1, 0) and (1, 0) and radius ρ
(ξ)
R ε̃R, respectively. Therefore, they are all

within Ñ (ξ). Here, ξ = J , GS and UGS.

We observe from the demonstrations of Theorems 3.1-3.9 that when JB = I or S = S, the
results in these theorems can be considerably improved and accurated.
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3.5 Connections to Krylov Subspace Methods

The preconditioning matrix M defined in (2.10) can be used to accelerate the Krylov subspace
methods such as GMRES or its restarted variant GMRES(m)[41, 40] for solving the large sparse
system of linear equations (1.1)-(1.2). This preconditioning matrix can be used as a left (see
(2.11)-(2.12)), a right (see (2.13)-(2.14)), or a split (see (2.15)-(2.17)) preconditioner to the
system of linear equations (1.1). The obtained equivalent linear systems can be solved by
GMRES or GMRES(m).

Assume that the coefficient matrices A of the above preconditioned linear systems are diago-
nalizable, i.e., there exist a nonsingular matrix X ∈ C

n×n and a diagonal matrix D ∈ C
n×n such

that A = XDX−1. Then it is well known from [41, Theorem 4] that the residual norm ‖r(k)‖2

at the k-th step of the preconditioned GMRES is bounded by ‖r(k)‖2 ≤ κ(X)ε(k)‖r(0)‖2, where
κ(X) is the Euclidean condition number of X and ε(k) := minP∈Pk

maxλi∈σ(A) |P(λi)|. Here, Pk

denotes the set of all polynomials P(λ) of degree not greater than k such that P(0) = 1, and
σ(A) denotes the spectrum of the matrix A.

Consider S defined by (3.2), see also (2.1) and (2.3). When the matrix S is an approximation
to the matrix S, from Theorems 3.1, 3.3, 3.5 and 3.7 we know that all eigenvalues of the matrix
A are contained in either of the circles N (ξ), ξ = J , GS and UGS. Therefore, when ρ(ξ) < 1, a
special case of Theorem 5 in [41] implies that ε(k) ≤ (ρ(ξ))k, ξ = J , GS and UGS.

Alternatively, the preconditioning matrix M can also be used as a left, a right, or a split
preconditioner to the system of linear equations (1.1) to obtain a preconditioned linear system
of coefficient matrix Ã = KL, KR, or K, respectively. Because Theorems 3.2, 3.4, 3.6 and 3.8
guarantee the positive definiteness of the preconditioned matrix Ã, it is known from [20] and
[41, pp. 866] that the following error bound for the correspondingly preconditioned GMRES
holds:

‖r(k)‖2 ≤
(

1 − (λmin(H̃))2

λmax(ÃT Ã)

) k
2

‖r(0)‖2,

where H̃ = 1
2(Ã + ÃT ) denotes the symmetric part of the matrix Ã, and λmin(·) and λmax(·)

denote, respectively, the smallest and the largest eigenvalues of the corresponding matrix. This
gives a guarantee for the convergence of the restarted preconditioned GMRES iteration, say
PGMRES(m), for all m, when the coefficient matrix Ã is positive definite.

When the matrix S is an approximation to the matrix −S, because the preconditioned ma-
trix A or Ã may be usually not positive definite, instead of GMRES and GMRES(m) we may
use other Krylov subspace methods such as BiCGSTAB, QMR and TFQMR to solve the pre-
conditioned linear systems. In particular, when the original coefficient matrix A is symmetric
indefinite, MINRES is a possible candidate if a symmetric positive definite or indefinite precon-
ditioner M is obtainable. See [2, 27, 40].

4 Applications to Three Typical Matrices

In this section, we will investigate the concretizations of the structured preconditioners es-
tablished in Sections 2 and 3 to three special classes of matrices arising from the real-world
applications.
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4.1 The Symmetric Positive Definite Matrix

When the matrix blocks B ∈ R
p×p and C ∈ R

q×q are symmetric positive definite, F = ET and
the Schur complement SA = C − ET B−1E is symmetric positive definite, the matrix A ∈ R

n×n

reduces to the block two-by-two symmetric positive definite matrix

A =

[
B E
ET C

]
.

This kind of matrices may arise in the red/black ordering of a symmetric positive definite linear
system, or in discretization incorporated with domain decomposition technique of a boundary
value problem of a self-adjoint elliptic partial differential equation, etc. See [2, 3, 6, 7, 27, 40].

Let LB ∈ R
p×p and LC ∈ R

q×q be nonsingular matrices such that either (2.1) or (2.2) holds
with RB = LT

B and RC = LT
C . Then from (2.10) and (2.6) we know that M = PWQ is the

structured preconditioner to the matrix A, where

P =

[
LB O

ET L−T
B LC

]
, Q =

[
LT

B L−1
B E

O LT
C

]
= P T ,

and W ∈ R
n×n is an approximation to the matrix

W =

[
JB (I − JB)E

E
T
(I − JB) S

]
≈ H

defined by (2.7), with E = L−1
B EL−T

C and S = JC − E
T
E.

Note that S and W are symmetric positive definite. Let S ∈ R
q×q be an approximation to the

matrix I − E
T
E ≈ S. To guarantee the symmetric positive definiteness of the preconditioning

matrix M , we can choose W to be the modified block Jacobi splitting matrix in (3.3) or the
modified block symmetric Gauss-Seidel splitting matrix in (3.6), obtaining the modified block
Jacobi-type preconditioner or the modified block symmetric Gauss-Seidel-type preconditioner
to the matrix A, respectively.

4.2 The Saddle Point Matrix

When the matrix block B ∈ R
p×p is symmetric positive definite, C = O and F = ±ET is of full

row rank, the matrix A ∈ R
n×n reduces to the saddle point matrices

A± =

[
B E

±ET O

]
.

This kind of matrices may arise in constrained optimization as well as least-squares, saddle-point
and Stokes problems, without a regularizing/stabilizing term, etc. See [14, 16, 24, 25, 28, 37, 44].

Let LB ∈ R
p×p be a nonsingular matrix such that either (2.1) or (2.2) holds with RB = LT

B

and LC = RC = I. Then from (2.10) and (2.6) we know that M± = P±W±Q± are the
preconditioners to the matrices A±, respectively, where

P± =

[
LB O

±ET L−T
B I

]
, Q± =

[
LT

B L−1
B E

O I

]
,
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and W± ∈ R
n×n are approximations to the matrices

W
±

=

[
JB (I − JB)E

±E
T
(I − JB) S

±

]
≈ H±

defined by (2.7), with E = L−1
B E and S

±
= ∓E

T
E.

Let S± ∈ R
q×q be approximations to the matrices S

±
. By choosing the matrices W± to be the

modified block Jacobi splitting matrices in (3.3), the modified block Gauss-Seidel splitting matri-
ces in (3.4) or (3.5), or the modified block unsymmetric Gauss-Seidel splitting matrices in (3.6),
we can obtain the modified block Jacobi-type preconditioners, the modified block Gauss-Seidel-
type preconditioners, or the modified block unsymmetric Gauss-Seidel-type preconditioners to
the matrices A±, respectively.

4.3 The Hamiltonian Matrix

When the matrix blocks B ∈ R
p×p is symmetric positive definite and C ∈ R

q×q is symmetric
positive/negative definite (denoted by C+/C−, respectively), and F = ∓ET , the matrix A ∈
R

n×n reduces to the Hamiltonian matrices

A± =

[
B E

∓ET C±

]
.

This kind of matrices may arise in stationary semiconductor devices [36, 43, 42], in constrained
optimization as well as least-squares, saddle-point and Stokes problems, with a regularizing/stabilizing
term [28].

Let LB ∈ R
p×p and LC±

∈ R
q×q be nonsingular matrices such that either (2.1) or (2.2) holds

with RB = LT
B and RC±

= LT
C±

. Then from (2.10) and (2.6) we know that M± = P±W±Q±

are the preconditioners to the matrices A±, where

P± =

[
LB O

∓ET L−T
B LC±

]
, Q± =

[
LT

B L−1
B E

O LT
C±

]
,

and W± ∈ R
n×n are approximations to the matrices

W
±

=

[
JB (I − JB)E

±

∓(E
±
)T (I − JB) S

±

]
≈ H±

defined by (2.7), with E
±

= L−1
B EL−T

C±
and S

±
= JC ± (E

±
)T E

±
.

Let S± ∈ R
q×q be approximations to the matrices I ± (E

±
)T E

± ≈ S
±
. By choosing the

matrices W± to be the modified block Jacobi splitting matrices in (3.3), the modified block
Gauss-Seidel splitting matrices in (3.4) or (3.5), or the modified block unsymmetric Gauss-
Seidel splitting matrices in (3.6), we can obtain the modified block Jacobi-type preconditioners,
the modified block Gauss-Seidel-type preconditioners, or the modified block unsymmetric Gauss-
Seidel-type preconditioners to the matrices A±, respectively.
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4.4 An Illustrative Example

Let us consider the electromagnetic scattering problem from a large rectangular cavity on the
x-y plane in which the medium is y-directional inhomogeneous. In the transverse magnetic
polarization case, when the model Helmholtz equation with positive wave number is discretized
by the five-point finite difference scheme with uniform stepsize h, we obtain a block two-by-two
system of linear equations (1.1)-(1.2), in which

B = V ⊗ I + I ⊗ V − I ⊗ Ω ∈ R
p×p, C = I − hG ∈ R

q×q, E = I ⊗ eq ∈ R
p×q

and F = −ET , where h = 1
q+1 , p = q2, θ ≥ 0 is a real constant, eq is the q-th unit vector in

R
q, I is the q-by-q identity matrix, V = tridiag(−1 + 1

2θh, 2,−1 − 1
2θh) ∈ R

q×q is a tridiagonal
matrix, Ω = h2 ·diag(ω2

1 , ω
2
2, . . . , ω

2
q ) ∈ R

q×q is a nonnegative diagonal matrix, G = (gij) ∈ R
q×q,

and ⊗ denotes the Kronecker product. See [33, 1].

Concretely, in our computations we take θ = 1, ωi = 16π (i = 1, 2, . . . , q), and gij = 1
(i+j)2

(i, j = 1, 2, . . . , q).

Let B ≈ LBRB be an incomplete triangular factorization of the matrix block B, and LC =
RC = I. Then we have

E = L−1
B E, F = −ET R−1

B , JC = C and S = C − FE.

Now, by choosing S = band`b
(C) − FE with band`b

(C) being the band matrix of half-band
width `b truncated from the matrix C, after straightforward computations we can obtain the
results listed in Tables 1-4 for the discretization stepsizes h = 1

16 , 1
24 , 1

32 and 1
64 , or equivalently,

for the problem sizes (p, q) = (225, 15), (529, 23), (961, 31) and (3969, 63), respectively.

In Table 1 we list the half-band width `b, the quantities

Θ = ‖E‖2, Γ = ‖F ‖2, Θs = ‖ES−1‖2 and Γs = ‖S−1F‖2

with respect to the matrix norms, and

εL = max{‖I − JB‖2, ‖I − S−1S‖2} and εR = max{‖I − JB‖2, ‖I − SS−1‖2}

with respect to the matrix approximation accuracies. For ξ = J , GS and UGS, in Tables 2-

4 we list the radii ρ
(ξ)
L εL and ρ

(ξ)
R εR of the circles centered at (1, 0) where all eigenvalues of

the matrices KL and KR are located within, ρ(ξ) = min{ρ(J)
L εL, ρ

(J)
R εR} and the radii ρ

(ξ)
∗ of

the smallest circles that include all eigenvalues of the corresponding preconditioned matrices

(see Theorems 3.1, 3.3 and 3.7), and the quantities δ
(ξ)
L and δ

(ξ)
R that guarantee the positive

definiteness of the preconditioned matrices KL and KR whenever εL < δ
(ξ)
L and εR < δ

(ξ)
R (see

Theorems 3.2, 3.4 and 3.8), respectively.
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Table 1: Quantities with respect to the preconditioned matrices

h 1
16

1
24

1
32

1
64

`b 2 4 6 30

Θ 11.9704 15.8432 25.3679 28.8844

Γ 6.05339 7.38068 8.95453 14.7829

Θs 5.77108 6.57523 11.0775 39.2410

Γs 2.82323 3.28938 3.93560 19.5354

εL 2.95e-3 1.52e-3 6.39e-04 5.75e-05

εR 4.13e-3 2.15e-3 7.89e-04 4.63e-05

Table 2: Bounds with respect to the MBJ-type preconditioner
M = PW (J)Q with W (J) being defined by (3.3)

h 1
16

1
24

1
32

1
64

ρ
(J)
L εL 0.111566 8.62e-02 6.78e-02 3.26e-02

ρ
(J)
R εR 0.152507 0.108497 7.98e-02 2.70e-02

ρ(J) 0.111566 8.62e-02 6.78e-02 2.70e-02

δ
(J)
L 2.75e-02 1.82e-02 9.71e-03 1.77e-02

δ
(J)
R 2.71e-02 1.98e-02 9.88e-03 1.72e-03

ρ
(J)
∗ 2.31e-03 1.24e-03 4.63e-04 3.93e-05

Table 3: Bounds with respect to the MBGS-type preconditioner
M = PW (GS)Q with W (GS) being defined by (3.4)

h 1
16

1
24

1
32

1
64

ρ
(GS)
L εL 3.55e-02 2.41e-02 1.62e-02 1.66e-03

ρ
(GS)
R εR 2.45e-02 1.44e-02 8.81e-03 1.82e-03

ρ(GS) 2.45e-02 1.44e-02 8.81e-03 1.66e-03

δ
(GS)
L 2.69e-02 1.79e-02 9.63e-03 1.76e-03

δ
(GS)
R 7.60e-03 4.69e-03 1.97e-03 2.17e-04

ρ
(GS)
∗ 2.31e-03 1.24e-03 4.63e-04 3.93e-05

Table 4: Bounds with respect to the MBUGS-type preconditioner
M = PW (UGS)Q with W (UGS) being defined by (3.6)

h 1
16

1
24

1
32

1
64

ρ
(UGS)
L εL 0.102518 8.06e-02 0.166135 3.25e-02

ρ
(UGS)
R εR 0.148479 0.106365 0.216704 2.69e-02

ρ(UGS) 0.102518 8.06e-02 0.166135 2.69e-02

δ
(UGS)
L 3.62e-03 1.87e-03 6.54e-04 7.16e-05

δ
(UGS)
R 4.32e-03 2.69e-03 9.47e-04 6.25e-05

ρ
(UGS)
∗ 2.31e-03 1.24e-03 4.63e-04 3.93e-05
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The results in Tables 2-4 clearly show that

(i) for ξ = J , GS and UGS, ρ
(ξ)
L εL < 1 and ρ

(ξ)
R εR < 1. It follows that ρ(ξ) < 1. As ρ

(ξ)
L εL

and ρ
(ξ)
R εR are quite small, the eigenvalues of the preconditioned matrices, with respect to

the MBJ-, the MBGS- and the MBUGS-type preconditioners, are tightly clustered around
the point (1, 0), see Theorems 3.1, 3.3 and 3.7. Hence, a Krylov subspace method such as
GMRES, when applied to the preconditoned systems of linear equations, will achieve fast
convergence, see Section 3.5;

(ii) for ξ = J , GS and UGS, εL < δ
(ξ)
L < 1 and εR < δ

(ξ)
R < 1. It follows that the preconditioned

matrices, with respect to the MBJ-, the MBGS- and the MBUGS-type preconditioners, are
positive definite, and the convergence of the restarted GMRES methods preconditioned by
these preconditioners are guaranteed, see Theorems 3.2, 3.4 and 3.8 as well as Section 3.5;

(iii) for ξ = J , GS and UGS, ρ
(ξ)
∗ ≤ ρ(ξ). This shows that the eigenvalues of the preconditioned

matrices, with respect to the MBJ-, the MBGS- and the MBUGS-type preconditioners,
are really located within the theoretically estimated circles centered at (1, 0) with radii
ρ(ξ) given in Theorems 3.1, 3.3 and 3.7, respectively.

In summary, this example shows that the conditions of our theorems are reasonable and the
conclusions of them are correct.

5 Conclusion and Remarks

We have established a general framework of practical and efficient structured preconditioners to
the large sparse block two-by-two nonsingular matrices. For several special cases associated with
the modified block relaxation iteration methods, we have studied the eigenvalue distributions
and the positive definiteness of the preconditioned matrices. Theoretical analyses have shown
that this preconditioning technique can afford effective and high-quality preconditioners to the
Krylov subspace iteration methods for solving large sparse systems of linear equations with block
two-by-two coefficient matrices.

We remark that our preconditioning technique and the corresponding theory can be straight-
forwardly developed to the following cases:

(a) The approximation matrix W ∈ R
n×n in (2.10) that is generated by a multi-step vari-

ant of the modified block Jacobi, the modified block Gauss-Seidel or the modified block
unsymmetric Gauss-Seidel splitting matrix of the matrix W ∈ R

n×n in (2.7)[6, 7];

(b) Alternatively, the approximation matrix W ∈ R
n×n in (2.10) that is generated by a

single- or multiple-step variant of the modified block successive overrelaxation (SOR), the
modified block unsymmetric SOR, the modified block accelerated overrelaxation (AOR)
or the modified block unsymmetric AOR splitting matrix of the matrix W ∈ R

n×n in
(2.7)[32, 6, 7];

(c) And more generally, the approximation matrix W ∈ R
n×n in (2.10) that is generated by

any suitable direct or iterative method induced by the matrix W ∈ R
n×n in (2.7);
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(d) The matrix A ∈ R
n×n that is of a general `-by-` block structure. More concretely, A =

(Ai,j) ∈ R
n×n, where Ai,j ∈ R

ni×nj , i, j = 1, 2, . . . , `, and ni(i = 1, 2, . . . , `) are positive
integers satisfying n1 + n2 + . . . + n` = n.

For the structured preconditioners based on the relaxation iteration methods involving pa-
rameters, we can further optimize them through choices of the optimal parameters. In addition,
we should point out that, although all results in this paper are demonstrated in ‖ ·‖2-norm, they
trivially hold for other consistent matrix norms such as ‖ · ‖1-norm and ‖ · ‖∞-norm.

Acknowledgments: The author is very much indebted to the referees for their constructive
and valuable comments and suggestions which greatly improved the original version of this
paper.

References

[1] H. Ammari, G. Bao and A.W. Wood, An integral equation method for the electromagnetic
scattering from cavities, Math. Methods Appl. Sci., 23(2000), 1057-1072.

[2] O. Axelsson, Iterative Solution Methods, Cambridge University Press, Cambridge, 1994.

[3] Z.-Z. Bai, Parallel Iterative Methods for Large-Scale Systems of Algebraic Equations, Ph.D.
Thesis of Shanghai University of Science and Technology, Shanghai, June 1993. (In Chinese)

[4] Z.-Z. Bai, A class of hybrid algebraic multilevel preconditioning methods, Appl. Numer.
Math., 19(1996), 389-399.

[5] Z.-Z. Bai, Parallel hybrid algebraic multilevel iterative methods, Linear Algebra Appl.,
267(1997), 281-315.

[6] Z.-Z. Bai, A class of modified block SSOR preconditioners for symmetric positive definite
systems of linear equations, Adv. Comput. Math., 10(1999), 169-186.

[7] Z.-Z. Bai, Modified block SSOR preconditioners for symmetric positive definite linear
systems, Ann. Operations Research, 103(2001), 263-282.

[8] Z.-Z. Bai, I.S. Duff and A.J. Wathen, A class of incomplete orthogonal factorization meth-
ods. I: methods and theories, BIT, 41(2001), 53-70.

[9] Z.-Z. Bai and G.-Q. Li, Restrictively preconditioned conjugate gradient methods for systems
of linear equations, IMA J. Numer. Anal., 23(2003), 561-580.

[10] Z.-Z. Bai and M.K. Ng, On inexact preconditioners for nonsymmetric matrices, SIAM J.
Sci. Comput., (2005), in press.

[11] Z.-Z. Bai and Z.-Q. Wang, Restrictive preconditioners for conjugate gradient methods for
symmetric positive definite linear systems, J. Comput. Appl. Math., (2005), in press.

[12] Z.-Z. Bai and D.-R. Wang, A class of new hybrid algebraic multilevel preconditioning
methods, Linear Algebra Appl., 260(1997), 223-255.



Structured Preconditioners for Block Two-by-Two Nonsingular Matrices 27

[13] J.T. Betts, Practical Methods for Optimal Control Using Nonlinear Programming, SIAM,
Philadelphia, PA, 2001.

[14] A. Björck, Numerical Methods for Least Squares Problems, SIAM, Philadelphia, PA, 1996.

[15] J.H. Bramble, J.E. Pasciak and A.T. Vassilev, Analysis of the inexact Uzawa algorithm for
saddle point problems, SIAM J. Numer. Anal., 34(1997), 1072-1092.

[16] F. Brezzi and M. Fortin, Mixed and Hybrid Finite Element Methods, Springer-Verlag,
New York etc., 1991.

[17] I.S. Duff, N.I.M. Gould, J.K. Reid, J.A. Scott and K. Turner, The factorization of sparse
symmetric indefinite matrices, IMA J. Numer. Anal., 11(1991), 181-204.

[18] I.S. Duff and J.K. Reid, Exploiting zeros on the diagonal in the direct solution of indefinite
sparse symmetric linear systems, ACM Trans. Math. Software, 22(1996), 227-257.

[19] N. Dyn and W.E. Ferguson, Jr., The numerical solution of equality constrained quadratic
programming problems, Math. Comput., 41(1983), 165-170.

[20] S.C. Eisenstat, H.C. Elman and M.H. Schultz, Variational iterative methods for nonsym-
metric systems of linear equations, SIAM J. Numer. Anal., 20(1983), 345-357.

[21] H.C. Elman, Preconditioners for saddle point problems arising in computational fluid
dynamics, Appl. Numer. Math., 43(2002), 75-89.

[22] H.C. Elman and G.H. Golub, Inexact and preconditioned Uzawa algorithms for saddle
point problems, SIAM J. Numer. Anal., 31(1994), 1645-1661.

[23] H.C. Elman, D.J. Silvester and A.J. Wathen, Performance and analysis of saddle point pre-
conditioners for the discrete steady-state Navier-Stokes equations, Numer. Math., 90(2002),
665-688.

[24] B. Fischer, R. Ramage, D.J. Silvester and A.J. Wathen, Minimum residual methods for
augmented systems, BIT, 38(1998), 527-543.

[25] P.E. Gill, W. Murray and M.H. Wright, Practical Optimization, Academic Press, New
York, NY, 1981.

[26] R. Glowinski, Numerical Methods for Nonlinear Variational Problems, Springer-Verlag,
New York etc., 1984.

[27] G.H. Golub and C.F. Van Loan, Matrix Computations, 3rd Edition, The Johns Hopkins
University Press, Baltimore and London, 1996.

[28] G.H. Golub and A.J. Wathen, An iteration for indefinite systems and its application to the
Navier-Stokes equations, SIAM J. Sci. Comput., 19(1998), 530-539.

[29] G.H. Golub, X. Wu and J.-Y. Yuan, SOR-like methods for augmented systems, BIT,
41(2001), 71-85.



28 Z.-Z. Bai

[30] N.I.M. Gould, M.E. Hribar and J. Nocedal, On the solution of equality constrained
quadratic programming problems arising in optimization, SIAM J. Sci. Comput., 23(2001),
1375-1394.

[31] E. Haber, U.M. Ascher and D. Oldenburg, On optimization techniques for solving nonlinear
inverse problems, Inverse Problems, 16(2000), 1263-1280.

[32] A. Hadjidimos, Accelerated overrelaxation method, Math. Comput., 32(1978), 149-157.

[33] J. Jin, The Finite Element Method in Electromagnetics, John Wiley & Sons, New York,
NY, 1993.

[34] C. Keller, N.I.M. Gould and A.J. Wathen, Constrained preconditioning for indefinite linear
systems, SIAM J. Matrix Anal. Appl., 21(2000), 1300-1317.

[35] A. Klawonn, Block-triangular preconditioners for saddle point problems with a penalty
term, SIAM J. Sci. Comput., 19(1998), 172-184.

[36] P.A. Markowich, The Stationary Semiconductor Device Equations, Springer-Verlag, New
York, 1986.

[37] M.F. Murphy, G.H. Golub and A.J. Wathen, A note on preconditioning for indefinite linear
systems, SIAM J. Sci. Comput., 21(2000), 1969-1972.

[38] I. Perugia and V. Simoncini, Block-diagonal and indefinite symmetric preconditioners for
mixed finite element formulations, Numer. Linear Algebra Appl., 7(2000), 585-616.

[39] R.J. Plemmons, A parallel block iterative method applied to computations in structural
analysis, SIAM J. Alg. Disc. Meth., 7(1986), 337-347.

[40] Y. Saad, Iterative Methods for Sparse Linear Systems, 2nd Edition, SIAM, Philadelphia,
PA, 2003.

[41] Y. Saad and M.H. Schultz, GMRES: a generalized minimal residual algorithm for solving
nonsymmetric linear systems, SIAM J. Sci. Stat. Comput., 7(1986), 856-869.

[42] G.E. Sartoris, A 3D rectangular mixed finite element method to solve the stationary semi-
conductor equations, SIAM J. Sci. Stat. Comput., 19(1998), 387-403.

[43] S. Selberherr, Analysis and Simulation of Semiconductor Devices, Springer-Verlag, New
York, 1984.

[44] G. Strang, Introduction to Applied Mathematics, Wellesley-Cambridge Press, MA, 1986.

[45] W. Zulenher, Analysis of iterative methods for saddle point problems: a unified approach,
Math. Comput., 71(2001), 479-505.


