ANALYSIS OF THE HETEROGENEOUS MULTISCALE METHOD FOR
PARABOLIC HOMOGENIZATION PROBLEMS

PINGBING MING AND PINGWEN ZHANG

ABSTRACT. The heterogeneous multiscale method (HMM) is applied to various parabolic prob-
lems with multiscale coefficients. These problems can be either linear or nonlinear. Optimal
estimates are proved for the error between the HMM solution and the homogenized solution.

1. INTRODUCTION AND MAIN RESULTS

1.1. Generality. Consider the following parabolic problem:
Ou® — V- (a°Vu®) = f in Dx(0,T)=:Q,
(1.1) ut =0 on 9D x (0,T),
u|t=0 = up.

Here ¢ is a small parameter that signifies the multiscale nature of the problem. We let D be a
bounded domain in R? and T a positive real number. Problem of this type is interesting because
of its simplicity, its relevance to several important practical problems such as the flow in porous
media and the mechanical properties of composite materials. In contrast to the elliptic problems,
there may be oscillations in the temporal direction besides the oscillation in the spatial direction.

On the analytic side, the following fact is known about (1.1). In the sense of parabolic H-
convergence (see [25], [8], [12]), introduced with minor modification by Spagnolo and Colombini
under the name of G-convergence or PG-convergence (see [11], [22], [23], [24]), that for every
f € L?0,T; H-Y(D)) and ug € L*(D), the sequence {u¢} the solutions of (1.1) satisfies

ut = U weakly in  L?(0,T; Hy(D)),
a*Vu® — AVU weakly in  L%(Q;R?),
where U is the unique solution of the problem
oU -V - (AVU) = f in Q,
(1.2) U=0 on 9D x (0,71,
Uli=o = uo.
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In general, there is no explicit formulas for the effective matrix .A.

Classical numerical methods for this problem are designed to resolve the full details of the fine
scale problem (1.1) and without taking into account the special features of the coefficient matrix
a®. In contrast, the modern multiscale methods are designed specifically for retrieving partial
information about u® with sublinear cost [16], i.e. the total cost grows sublinearly with the cost
of solving the full fine scale problem. To this end, the methods have to take the full advantage of
the special features of the problem such as scale separation, self-similarity of the solution. One
cannot hope to get an algorithm with sublinear cost for a fully general problem.

The heterogeneous multiscale method introduced in [15] is a general methodology for designing
sublinear algorithm by exploiting the scale separation and other special features of the problem.
HMM consists of two ingredients: An overall macroscopic scheme for macro variables on a macro
grid and estimating the missing macroscopic data from the microscopic model. The efficiency
of HMM lies in the ability to extract the missing macroscale data from microscale models with
minimum cost, by exploiting scale separation.

For (1.1), the macroscopic solver is chosen to be the standard piecewise linear finite element
method [10] over a macroscopic triangulation 7y with mesh size H as the spatial solver, and the
backward Euler scheme as the temporal discretization. Many other conventional discretization
methods could be proper candidates as the macroscopic solver. For example, finite difference
method and Discontinuous Galerkin method have been employed as the macroscopic solver in [1]
and [9], respectively.

We formulate our method as follows. For 1 < k < n, let t;, = kAt with At =T /n. Let Ud =
Qruo with Qg the L? projection operator from Hg(D) to Xpg, where Xy is the macroscopic
finite element space. Let UI’?I € Xy be the solution of the problem

(1.3) QUL V) + Ag(ty; UE, V) = (f*,V)  forall V € Xy,

where UY, = (U, — UE™) /At and f* = At~ t:+At f(z,s)ds.

t
It remains to estimate the stiffness matrix, which amounts to evaluating the effective bilinear

form Ag(t,;V,W) for any VW € Xg. We write Ay as
Ap(t,; VW) = /VW - Ap(z,t,)VV da = Z /VW - Ap(2,t,)VV dz
D KGTHK

KeTy

where xf is the barycenter of K. We approximate Ag (2 k,t,) by solving the Cauchy-Dirichlet
problem:

o —V - (CLEVUE) =0 in (zg + Is) X (tn,tn + ),
(1.4) v =V on 0I5 X (tn,tn + Tn),
v |i=t, = V.
We then let
tn+Tn
VW - Ap(zk,t,)VV ~ ﬁ /sz -a®Vo© dz dt,
tn Iy

where 7,, denotes the micro simulation time evolves in n-th macro time step, and Is = §Y with
the unit cell Y: = (—1/2,1/2)9. For simplicity, we denote Is: = xx + Is, T): = (tn,t, + 7,), and
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the cylinder Q,: = I5 x T),,. We thus rewrite Ay as

(15) AH(tn;‘/,W)Z = Z % /V’uﬁ - at Vot dx dt.
KeTy " Q,

In (1.4), we use the Dirichlet boundary condition and the Cauchy initial condition. One may
also use other boundary conditions and initial conditions. For example, we may use Neumann
or periodic boundary condition and periodic initial condition. In the case when a® = a(z, x/¢,t)
and a(z,y,t) is periodic in y, one can take I5 to be xx + €Y and impose the boundary /initial
conditions as v° — V is periodic on the boundary of the cylinder (zx + €Y) X (t, t, + €2).

So far, the algorithm is quite general. The saving compared with solving the full fine scale
problem comes from the fact that we may choose I5 and {71} much smaller than K and At,
respectively. The size of the micro cell I5 and the micro simulation time {73} are mainly deter-
mined by the accuracy, the cost and the micro structure of a®. The main purpose of the error
analysis presented below is to help to assess the performance of the method and give a guidance
for the designing of the methods, namely, how we choose ¢ and {74}, or types of cell problem.

Since HMM is based on standard macroscale numerical methods and uses the microscale model
only as a supplement, it is possible to analyze its stability and accuracy within the traditional
framework of numerical analysis. This has already been illustrated in [14, 15, 17] and will be
further elaborated in the present paper. Roughly speaking, we will show that HMM is stable
whenever the macroscopic solver is stable. The overall error between the HMM solution and the
homogenized solution is controlled by the accuracy of the macroscopic solver and the consistency
error emanates from the estimate of the macroscopic data from the microscopic model, which
will be denoted by e(HMM). Next we estimate e(HMM) for two cases. One is a® = a(x,x/e,t)
with a(x,y,t) is periodic in y, and the other is a® = a(z,x/e,t,t/e?) with a(x,y,t,s) is periodic
in y and s.

We will always assume that a°(z,t) is symmetric and uniformly elliptic:

A <a® < AT

for some A\, 4 > 0. We will use || to denote the abstract value of a scalar quantity and the
volume of a set.

Throughout this paper, the generic constant C' is assumed to be independent of the microscale
¢, the mesh size H, the time step At, the cell size ¢ and the micro simulation time {7}}_,. We
use the summation convention.

1.2. Main results. Define

(1.6) e(HMM) = max. er(HMM)

with

er(HMM) = max [[(A — An)(zx, b))

where || - || denotes the Euclidean norm.
Our main results for the linear problem are as follows.

Theorem 1.1. Let U and U}, be the solutions of (1.2) and (1.3), respectively. If U is sufficiently
smooth, then there exists a constant C' that is independent of €,0, {mu}}_,, H, At, such that

(1.7) |Uf — Uz, to)llo + lUF — Uz, ta)|| < C(At + H? + e(HMM)),
(1.8) |Up — Uz, ta)|1 < C(At + H + e(HMM)At/?),
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where || - || is the weighted space-time H' morm that is defined for every V. = {V*}1_, with
VFe X fork=1,---,n as

S /
vl = (S adwvHiz) .

k=1

At this stage, no assumption on the form of a® is necessary. For U}, to converge to U(x,ty),
ie. e(HMM) — 0. U must be chosen as the solution of the homogenized equation, which we now
assume exists. To obtain qualitative estimate for e(HMM), we must make more assumptions on
ac.

We estimate e(HMM) for two special cases that depend on the estimate of the homogenized
problem (1.1) presented in the Appendix. The extension to other cases [2, 28] is beyond this
paper since it depends heavily on the qualitative estimates of the corresponding homogenization

problem that seem missing presently.

Theorem 1.2. For a® = a(z,xz/e,t) with a(x,y,t) is periodic in y with period Y, and the cell
problem (1.4) is solved with Dirichlet boundary condition and Cauchy initial condition, we have

€ g2
. < = — ).
(1.9) e(HMM) < C[5+ =+ lrgnlggxn(m + Tk)}
Another important case for which the estimate of e(HMM) can be obtained is the so called
self-similar case, i.e. a® = a(z,x/e,t,t/c?). In this case, we have

Theorem 1.3. For a® = a(z,x/e,t,t/e?) with a(x,y,t,s) is periodic in yand s with period Y
and 1, respectively, and the cell problem (1.4) is solved with Dirichlet boundary condition and
Cauchy initial condition, we have

(1.10) e(HMM) < C[5 + (%)1/2 + 1@5&(“ + %)}
- k

Similar results with some modification hold for the nonlinear problems. The details are given
in § 4.

1.3. Parameter choices. In this part, we analyze the sources of each terms appear in the upper
bound of e(HMM). It is clear that the term /6 comes from the boundary condition, while the
term €2 /7 comes from the initial condition. It is clear to see the corresponding terms vanishes
if we let 6/, 7/e? € N and v® — V be periodic on 99,,.

For a° = a(z,x/e,t), we may choose § = Me ~ /2, and 7, = Mpe®> ~ e for k=1, - ,n.
With such choice of parameters, we get
(1.11) e(HMM) < Cel/2,

For a® = a(x,x/e,t,t/e?), we may choose § = Mije ~ /3, and 7, = Mye? ~ £%/3 for
k=1,---,n. With such choice of parameters, we have the overall estimate for e(HMM) as
(1.12) e(HMM) < Cel/3.

Actually, classical homogenization result suggests that there is no oscillation in the temporal
direction when a® = a(z,z/e,t). Therefore, we may replace (1.4) by an elliptic cell problem:

{ V- (a°(-, t,)V®) =0 in Iy,

(1.13)
vt =V on Ol
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Define w® in the same way and Apg is defined as

1
VW - Ap(zk,tn)VV = ol / Vw® - a®(-, t,)Vo© da.
5
Is

Corollary 1.4. For a® = a(x,x/e,t) with a(x,y,t) is periodic in y with period Y, if we use the
cell problem (1.13), then

(1.14) e(HMM) < 0(6 + %)

The proof of (1.14) is essentially the same as the elliptic case as we have done in [17]. Actually,
it may also follow the proof of Theorem 1.2 literally, we omit the proof.

2. ANALYSIS OF THE METHOD

2.1. Preliminaries and notations. We introduce some notations. Denote by L?(D), H™(D)
and HJ*(D),m € Z the usual Lebesgue space and Sobolev spaces. (+,-)p and || - |lm,p will be
denoted as the L? inner-product and norms, respectively, the subscript will be omitted if no
confusion can occur. pudz is defined as the mean value of u over D. For any Banach space U
with norm || - ||z, the space L?(0,T;U) consists of all measurable functions u : [0,7] — U with

T 1/2
oy = ([ o)1 )

The space H™(0,T;U) comprises of all functions d*u/dt* € L?(0,T;U) for 0 < k < m, which is
equipped with the norm

r k k|12 1/2
fullworani= ([ 30 Idtuyarti ae) "
0 o<k<m

The space C([0,T]; U) comprises of all continuous functions « : [0,7] — U with
Juleqoray = s lu(t) -

For vectors © = (z1,72) and y = (y1,¥42) € R?%, & ® y is a 2 x 2 matrix with elements
(x ®y)ij == xiy;. A matrix product is defined by A : B = tr(A” B), where tr(A) is the trace of
a 2 x 2 matrix A.

The following simple result underlines the stability of HMM for problem (1.1). A similar one
for the elliptic problem can be found in [17, Lemma 1.9].

Lemma 2.1. Given a domain Q € R*, T > 0 and a linear function V, let ¢ be the solution of

dp— V- (aVe) =0 in 2 x(0,T],
(2.1) =V on 08 x (0,T],
@'t:O = Vu

where a = (aq;) satisfies
M <a< Al a.e. (x,t) € £2x(0,T).

Then for any t > 0, we have

/ 1/2 / 1/2
22 IWloo < Ve bloa ad ([ [o-ave)" < ([ [vveavr)™
0 [
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Proof. Notice that ¢ =V on the boundary of {2, using the fact that VV is a constant in (2, and
integration by parts leads to

/V(g@ —V)(z,t)VV(z)dz =0 for any t > 0,

which implies

/|V<p(x,t)|2 dz = /|VV(J:)|2 dx + /|V(<p — V) (x, 1) da.
Q Q Q

This gives the first result of (2.2). Multiplying the first equation of (2.1) by ¢ —V and integrating

by parts, we obtain

/|<P$f V|2dw+//V<p:cs) a(z,s)Ve(z,s)dzds

(2.3) / / VV(2) - alz, s)Vy(z, s) dz ds.

By Cauchy-Schwartz inequality,

/VV a(z, s)Ve(z,s)dzds < //ch (x,s) - a(z, s)Ve(zx,s) dxds) i
0o

t 1/2
VV(z)-a(x,s)VV(x)dxds .
(/] )

A combination of the above two gives the second part of (2.2). O

Remark 2.2. For this result, the coefficient a = (aij) may depend on the solution, i.e. (2.1)
may be nonlinear.

2.2. Generality. Using (2.2) with 2 = I5, for any V € Xy and 1 < k < n, we have

Ap(ty; V, V) = Z|K|][ Vot - a® Vo' >/\Z|K|][ |V |2

KeTy KeTy
>N ) |K|][ VVPE =X > /|VV|2
KeTy KeTy
(2.4) = NIVV]3.

Similarly, we get

Antt V) < ST IKI(f v areer)

Vuw® - aEsz) 2

KeTy Qk Qk
< 3 IK]| ][ VV -V 2( vw-afvw)l/2
KeTy Qk
1/2 /
<A Y K[VVIVW] =4 Y /|VV| (/ |VW|2)
KeTu KeTu K

(2.5) < A[VVlo[[VW o
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The stability of the method is included in the following lemma. The proof is standard by (2.4)
and (2.5), we refer to [26] for details.

Lemma 2.3. There exists a constant C such that

NE

Al #120) "),

149120) ),

(2.6) 1Uzllo + U3 < C(Jluollo + (
k

Il
-

NE

(2.7) IvU o < € (Jluolls + (

E
Il
—

where || - ||—1.4 is defined for any G € L*(D) as

G.V)
Gll_1, = su .
1G1-1n = sup T77,

To prove Theorem 1.1, we define an auxiliary function (7}_} € Xy as: Let UY, = Qrug, and
for 1 <k <n, UI’fI € Xy satisfies

(2.8) @UE, V) + A(ty; Uk, V) = (fF,V)  forall V e Xpg,

where A is defined as A(tg; V,W) = > g [KIVW - A(zfe, ) VV for all VW € Xp.
The error estimate for the above problem is well-known [26]:

(2.9) Uf = U, ta)lo + IUf = Uz, ta)ll| < C(At+ H?), U = Uz, t)ll < C(At+ H).

Proof for Theorem 1.1 For 1 < k < n, define EF: = U¥, — Uk. For any V € Xy, it is clear that
(2.10) (OE*, V) + A(ty; E*, V) = (F*, V),
where (F*,V): = A(ty; UK, V) — A (te; UK, V). By definition,
[F*| -1, < ex(HMM)[|VU o-
By (2.6) we have, since E° = 0,
(2.11) [E™lo + IE"[| < Ce(HMM)|[Ug ||| < Ce(HMM).

Combining the above inequality and the first part of (2.9), we obtain (1.7).
Repeating the above steps, using (2.7) and (2.6), we obtain

[VE o < Ce(HMM)At™Y2||U% || < Ce(HMM)At~ /2.

The estimate (1.8) follows from the above estimate and the second part of (2.9). O
Remark 2.4. Note that E™ € Xy for any n, using (2.11) and the inverse estimate [10], we get
IB"|y < (C/H)|E"[o < Ce(HMM)/H,

which together with the second part of (2.9) leads to

(2.12) JUR — Uz, t,)|ls < C(H + At + e(HMM)/H).
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3. ESTIMATING e(HMM)

In this section, we estimate e(HMM) for two cases, one is a® = a(x, x/¢e,t) and the other is a® =
a(z,x/e,t,t/e%). In both cases, the cell problem (1.4) is solved with Dirichlet boundary condition
and Cauchy initial condition. We will use a%.,, = a(zk, /e, tn) or a%, = a(vk,x/e, tn,t/e?)
and x g, = X(Tx,2/e, tn) OF X, = X(TK,x/e, tn,t/?) for simplicity, where x is the solution
of certain cell problems (cf. (3.4) and (3.15)).

Estimating e(HMM) consists of two steps. First, we estimate ||A—A||. The auxiliary operator
A is defined by

(3.1) VW - Az, t,)VV = ][ \VATIE a§<7nv175 for any W,V € Xy,
Qn
where

~

Ve=Vi4exg, VV  and  W=W +exg,  VW.
Next we estimate || A — Ag/|. This is achieved by

VW - (A= Ap)(zk, tn)VV = ][ [VIWVe - a5
Qp

V(VE —0%) + YV a5, V(WE — )]

(3.2) - ][ [Vw® - (af — a%.,,) Vv + V(w® — WS) af, V(T — Vo).
9,

Finally, estimating e(HMM) follows from the triangle inequality.

3.1. Estimating e(HMM) for the case when a¢ = a(z,z/e,t). Denote by ©¢ the solution
of (1.4) with a replaced by af,,. By standard a priori estimate and (2.2), we have

(33) V(v = 0%)l2(0,) < C6+70)[[VO°ll1200,) < CO + )[VVlL2(0,)-
Forj=1,---,d, x = {3 }?:1 is periodic in y with period Y and satisfies

) O’ B o , ; B
(3.4) o (am ayk)(:v,y,t) = (8yiaw)(w,y,t) inY, /x (z,y,t)dy = 0.

Y
This problem is solvable and there exists a constant C' such that for j =1, -+ ,d,
(3.5) VX (x,y,t) <C for all (z,t) € Qand y € Y.
The effective matrix is given by
o’ ..
(36) Aij(xat) = (aij +a1k—>(xayvt)dy 1) = 15 7d-
Y Ok
A straightforward calculation gives
(3.7) V- (a5,VVE)=0 and V- (a%,VW) =0.
Define 6° = 0° — 175, which obviously satisfies
9,0° —V - (a%,V0) =0 in Q,,
(3.8) 0° = —exgn - VV on 0Is x T,

0%li=t, = —exxn - VV.

Lemma 3.1. Let 6° be solution of (3.8). There exists a constant independent of €, and T, such
that

€ e\ 1/2
(3.9) 196 ls22 < (=75 +(5) ) IVV I
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Proof. Multiplying both sides of (3.8); by 65: = 6° + (175 —V)(1 — pf) and integrating over I,
we obtain

(3.10) 5 at/ 051 + / Vo - a%,, V05 :/1 V(07 - 6°) - a%,, V05,
s
where the cut-off function p* € C§°(Is),|Vp®| < C/e and

. {1 if dist(x, 015)
p =

>2
0 if dist(x,0I5) <e

It is clear to see

15 £ £ 15 £ 15 13 £ 15 1/2 15 13 £ 1/2
V(0 —6°%) - Vo3| < V(O] —6°) - V(; —6 Vo5 - Vo
| . (65 ) A n il < . (05 ) K n (05 ) . 1 A n VU .
5 S5 5

Substituting the above inequality into (3.10), we obtain

5 107+ [ 905, vt < [ 00— 0)-aic, 905 o).
t 15 16

Integrating the above inequality over T,,, we get
MVOillL2a,) < 165 @ ta)ll Ty + ANV = 09)]720,),s
which implies
V6l 22(0,) < A™V2105 (@, t)ll 2y + (14 (A/N) V)V (05 = 67)| 20
A direct calculation gives
1965~ )0 < O(5) 19V 20,
165 (@, t) | 22y = ellp* (V= V)llzay) < Cel| V|2
A combination of the above three inequalities leads to (3.9). O
Next lemma concerns estimating |4 — A|.

Lemma 3.2. There exists a constant C such that

(3.11) I(A= Aar, ta)| < O

Proof. Denote by I.. = kY, where & is the integer part of /e, i.e. kK = |d/e], integrating by
parts and using (3.7), we get

][ V(W = W) - a5,V =0.
Using the expression of Ve and (3.6), we obtain
][1 VW - a5, VVE = VW - Az, tn)VV.
It follows from the above twotquations that
][1 VWe - a5, VVE = VW - A(zsc, t,)VV.
Since V¢, W*¢ and af ., are independent of ¢, we write A as

VW - ./Z(IK, t, )VV = ]Z Ve . a‘}()nV‘A/E for any W,V € Xg,
Is
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In follows from the above equation and (3.5) that

~ I. ~ B ~
VW - (A — A) (25, t,)VV] < (1 - ||I;||)][ VW - a5, VVE| + |I5] ! / VW - a5, V7|
INE
IS\INE
(3.12) < C%|VW| vV,
which in turn implies (3.11). O

Proof of (1.9) Using the first part of (3.7) and noting [nga —w® + W(1 - p°)|(x,t) = 0 for
(z,t) € 0I5 x Ty, integrating by parts, we have

][ VVE - a5 V(W p® —w + W (L~ pf)) = 0.
Qn
Therefore, we get

][ VV* a5,V ][ V0% - a5, VI = W)(1 - )]

= ][ VV* a5 VI = W)(1 = ).
5
Symmetrically, using the second part of (3.7), we have
(3.13) ]lQ VW - a5, V(VE — %) = ][1 VWE - a5, VI(VE = V)(1 - p7)).
n s
Using the above two identities, we rewrite (3.2) as
W (A= Ag)(xx, ta)VV

= ][1 (VW2 a5, VI(VE = V)(1 = p°)] + VV= - g, V(W = W) (1 = p°)]]

(3.14) - ][ [Vw® - (af — a%.,,) Vv + V(w® — WS) cag ,V(vt — Vo) =0 + .
Q'Vl

A direct calculation gives
L] < c§|VW| V.

It follows from (3.3) and (3.9) that

~ ) € 1/2
IV =Pl < 19070 +IVE 20, < C(0+m+(5) "+ ) IVV 2o

Similarly, we have
— e\ 1/2
IV (@ = W9)lso, <C(0+m+(5)  + 1/2)||VWHL2
Using the above two inequalities, we obtain

IV (W = W) 20y [V = V) ||12(a,)

A
Vw20 )IIVUEHL?(QnWﬁ
< C|Q,|” 1(6+Tn+5+ )IIVWHLz IVViL2,)

- c(5+m+ =+ )|VW| vV,
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Summing up the estimates for I; and Is, we obtain
2

1A= Am) (@i, ta) | < C(6 47+ 5 + =),

0 Tn

which together with (3.11) gives (1.9). O

3.2. Estimating ¢(HMM) for the case when a° = a(z,x/e,t,t/e?). Next we estimate
e(HMM) for the case a® = a(w,z/e,t,t/e?) when a(x,y,t,s) is periodic in y and s with pe-
riod Y and 1, respectively. We assume that (1.4) is solved with Dirichlet boundary condition
and Cauchy initial condition. For j = 1,--- . d, x(x,9,t,8) = {}’ ?:1 is periodic in y and s with
periods Y and 1, respectively, and satisfies

. 1
. J .
3.15) 000 =0, (a0 5 ) (wr0..5) = Gai)wntes) and [ [yt dyds =0,
k
0

Y

The existence of x7 is classical since

1
//(%ﬂij)(%y’t, s)dyds = 0.
0Y

By [20], there exists a constant C' such that for j =1,--- ,d,
(3.16) IX? (2, y, 5, )| + |VyX? (2,9,5,t)] <C forall (z,t) € Q,y € Y and s € (0,1).

Denote by 9° the solution of (1.4) with a® replaced by a% . Using the standard a priori
estimate and Lemma 2.1, we have

(3.17) 190 = ) 1200,) < C6 + )V V]l 2200,
It is easy to verify that
(3.18) Ve~V (a5%,VV) =0 and W —V- (a5, VW) =0,
and
0" =V - (a%,, V") =0 in Q,,
(3.19) 0° = —exg, - VV on 9Is x T,

0% li=t, = —€(Xrcn - VV)|t=t,-

For the correction 6%, we have the following estimate (cf. (3.9)).

Lemma 3.3. There exists a constant C independent of €,6 and 7, such that

e\ 1/2 €
(3.20) 196 200y <€((5) + =) IVV o

The proof of (3.20) is essentially the same as Lemma 3.1. The difference lies in the second
term in the right-hand side of the equation below.

Proof. Multiplying both sides of (3.19); by 65: = 6+ (175 —V)(1—p°) and integrating by parts,
we get

10 1
(321) 5o |9§|2+/ vo‘i.a;nvei:/ V9f~a5V(9f—95)+§/ 6:0,(0° — 6°).
Is Is Is

Is
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It follows from (3.15) that
[ 06 -0 ==t [ oaxe, V- 005
Is Is

= [ Vy(akn I+ Vyxr ) VV (L= p%)b

Is

- / V- (@I + Vyxen)) TV (L — 0°)5.
Is

Integrating by parts, we obtain

/ 6:0,(07 — 0°) = — / V01— )TV : eI+ Vyxsen)

Is Is

:_/Xyﬁﬁwﬁ®vw:@mu+mmKw
Is
(3.22) + 05Vp© - a% (I +Vyxxn)VV.

Is

Using (3.16), we bound the first term in the right-hand side of the above equation as
| (1 —p)IVOT @ VV]:ak (I + Vyxk .l

< A(mn;)ax 11+ VX g nll VOl L2) IV V I L2 (1501 —22))

<0(5) "I98l 9V ey,
By maximum principle [20], we have

(3.23) Jmax (0] < € max [ (e 0)|[VV]

We thus get

0% (2,1)| < 0° (2, 1)] + (@,1)||VV]) <2 (@, || VV].
Jmax (B 0] < mae (8 (@.0)] + elxaea(@ OIVV]) <26 ma xica (@ 0TV

Therefore, we bound the second term in the right-hand side of (3.22) as

] 590 i1+ Ve OV € 24 mae 1+ Ve (o)) [ [9VETH]

Is (z,t)€Q,

gcgmmmpm,

Substituting the above two estimates into (3.21), we obtain
190 1
301 ), CHE +/I Vo1 - a% Vi < 5/1 Vo1 - a% ., Vi +/I V(05 —07) - a%,, V(6° — 07)
5 5 8 5
€
+c%vamﬂky
Therefore, integrating the above inequality over T},, we obtain

V6 < o165 (x.t V(65 — 6° N ivv
IVOillz2(a,) < C{I05 (2, tn) |25y + IV( 20, + 5 IVViLzca,) )

which in turn implies

e\ 1/2
IV ll12(0,) < C165 @, ta) |21y + CIV(E = )220,y + C(5) 19V Izago,) )-
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A direct calculation gives
167 (2, tn) [ L2(15) < CellVV[L21),

o eN1/2
IV = 0D)l120,) < C(5)  I9VIa(on-
A combination of the above three inequalities leads to (3.20). (]

Similar to Lemma 3.2, we have

Lemma 3.4. There exists a constant C such that
~ e g2
(3:24) IA= Dt <O(5+=).

Proof. Let 0: = |1,/¢%], and Qpi = Le ¥ (tn,tn + €e?). The key to the proof is the following
observation: For any V,W € X, we have

(3.25) VW - A, t2)VV: = ][~ VIV - ae VT
Qn
Integration by parts and using the first part of (3.18), we obtain

(W& —W)8, Ve

][~ V(W —W) - a5, VVE = —][~ (W& = W)V - (a5, VV®) = —][
Qn Qn

Qn

= _][~ (W = W)a,(VE — V).
Qn

A direct calculation leads to
][~ VW - a5, VVE = VW - Az, t,)VV.
Q,
Adding up the above two equations, we obtain

(We — W), (Ve - V)

VW - Az, ta)VV — ][~ YWe - a5, VV* :]l
Qn

Qp

Exchanging W and V' and notice that a® and A are symmetric, we get

(Ve =)o, (We —W).

VW-A(xK,tn)vv—]Q VWe - a5y, VV© :][
Qn Qn

Adding up the above two equations and using the explicit expressions of Ve and /V[75, we get

o~ —~ 1 ~ o~
VW - A(zk,t,)VV — ][~ VWe. a‘}nVVS = 5][~ H[(VE=VY(WE =W)] =0,
Qn Qn

which gives (3.25).
By (3.25), proceeding as that in (3.12) and using (3.16), we get (3.24). O
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Proof for (1.10) It follows from (3.2), (3.17) and Lemma 3.3 that

= e\1/2 €
VW - (A — Ap) (25, tn)VV| < c(5+rn + (5) + ?)va vV
0+ T . R
+C 9] [Vw® | L2 VY] L2(0,)

A e T1r7e € ire
+ m”v(w —Wo)llL2@ ) IV(0® = V)llL2(a,)

< 0(5 T (%)1/2 + %) VW||VV],

which implies

(3.26) (A = Ar) (k. tn)|| < 0(6 P (5)1/2 T )

] ri/2
This estimate together with (3.24) leads to (1.10). O

Remark 3.5. One may wonder whether the estimate (1.10) can be improved to (1.9). This is
actually not the case due to (3.26).

4. NONLINEAR PROBLEM

We consider the following nonlinear problem
Owu® —V - (as (x,t,uE)VuE) =f in Q,
(4.1) ut=0 on 9D x (0,T),
uli—o = uo.
We assume that a®(z, ¢, u®) satisfies
NEP < afj(w,t,2)6&5 < AlEP? for all ¢ € R? and for all (z,t) € Qand z € R

with 0 < A < A. Moreover, we assume that a®(z,t, z) is Lipschitz continuous in z uniformly
with respect to  and ¢. The existence of u® is classic. Similar problem in the elliptic case has
been discussed in [7], the extension to (4.1) is straightforward. We refer to [19] for more general
nonlinear problems. The homogenized problem, if it exists, is of the following form:

U — V- (A(z,t,U)VU) = f in Q,
(4.2) U=0 on 9D x (0,T),
U|t:0 = Ug.

To formulate HMM, for any V € X, define v to be the solution of
o —V - (aE (w,t, vE)VUE) =0 in Q,,
(4.3) ¥ =V on Ols x Ty,
V¥, = V.

We can define w* similarly.
For any VW € X, we define

VW - Ay (zk,tn, V)VV: = ][ Vw® - af(x,t,v°)Vo°,
Qn
and Ag(tn; ViW) =Y ger, [KIVW - Ay (2K, 0, V)VV.
The HMM solution is given by the problem:



HMM FOR PARABOLIC PROBLEM 15

Problem 4.1. Let U% = Qpuuo, for k=1,---,n, find UI’fI € Xy such that
(4.4) OUE V) + A (te; US, V) = (f5,V)  for allV € Xy.

Remark 4.2. We only consider a special nonlinear problem, the algorithm applies to much
more general nonlinear problem, cf. [19], which together with realistic application will be dealt in
a forthcoming paper.

For any VW € X, we define
E,(V,W):=VW - (Ag — A)(xk,tr, V)VV,

and
Ep(V,W)

HMM) = ERL V)
el )= ke, TOWOV]
1<k<n

Proceeding along the same line of Lemma 2.1, we get the same estimate for v. Notice that
a® in the second part of (2.2) depends on the solution v°. Obviously, for any V € Xg, we have

(4.5) Ap(ti; V,V) = A|VV]3.

By (4.5), it is easy to derive a stability result that is similar to (2.6) and (2.7).
Similar to the second part of (2.2), for any W € Xp, we have

t

1/2 1/2

//Vw E(x, t,w) ws) < (//VW-as(x,t,ws)VW) .
0 Q

Using the above mequahty, we get

1/2 1/2
Ap(te; V,W) Z |K| ][ Vo® - a®(x,t,v )V’US) ( Vuw*® - ag(x,t,wa)ng)
KeTy Qp
1/2 1/2
<X |K|( ][ VV -t (z,t,v )vv) ( YW (x,t,wg)VW)
KeTy
A 1/2 /
SA()\) S K| [VV] VY] = /|VV| (/ v )
KeTu KeTy K
(4.6) < AA/NVEIVV ol VW lo.

The existence of the solution easily follows from the standard approach in [13] by (4.5)
and (4.6), while the uniqueness is more involved, which together with the error estimate will
be addressed in Theorem 4.3.

The error estimate for Problem 4.1 is essentially the same as the linear case. Define (7}} as:
Let (7% = Qpnug, fork=1,--- n, (71’51 € Xp satisfies

@UE, V) + A(ty; Uk, V) = (fF,V)  forall V e Xpg,

where
Alt; Ul V) = Y |IKIVV - Az, te, Ug) VU .
KeTy
For notation simplicity, we associate A with an operator A as
(A(z, t,, V)VV,VW) = A(t; V,W)  for all V, W € Xp.
By [7, Theorem 3.1], the effective matrix A satisfies
M < A< (AN
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Moreover, by [7, Proposition 3.5], A(z,t,z) (so does A) is Lipschitz continuous in z uniformly
with respect to all (z,t) € Q, and the Lipschitz constant is denoted by L. By [26],

(47) |0 = Ula,ta)lo < C(AL+ H),
and there exists a constant K;: = C,(At'/? + H + At/H) such that
(4.8) A2 | VU |1 < Ky,

where C, depends on U.

Theorem 4.3. Let U and U}, be solutions of (4.2) and (4.4), respectively. Then, under the
appropriate regularity assumption on U, we have, for small At,

(4.9) Ul = Uz, ty)|o < C(H? + At + e(HMM)).

Moreover, for M = K1+CH ~te(HMM) with C a generic constant independent of ¢,8, H, 7, X, Z
and V, if M satisfies

(4.10) L*M? < ),

and there exists a constant n(M) with 0 < n(M) < \/2 such that

(1.11) JIBXV) = Bu(Z V)l do < n(00)1X = 28| Vo
D

for all X,Z € Xy N Wh(D) and V € Xy satisfying || X|
solution is locally unique.

1Loos | Z]|1,00 < M, then the HMM

Proof. Define E™ = U}, — (7};, we have for any V € Xg,
(DE* V) + (A(x, t,, URYVER VV) = (A — Ag)(te; UK, V)
+ (A, tr, U) — A, 1, US)VUE, VV).

Taking V = E* in the above equation and using (4.5), we get

1 _ ~
i (IS = 1B 1) + A VE* |} < e(HMM)|[VUF o[V E* o + CI VT < | ¥ lo | VElo.
Using (4.8) and a kickback of |[VE*|, we get

1
2At
There exists a constant M7 such that for At < M, there holds

_ A
(4.12) (HE’“H% - | E* 1H3) + SIVER|§ < (¢2(HMM)/N)|[VUE[G + ClIE"|I5.

IE*|[§ < 1+ CAY|EFH|F + CAt 2 (HMM)||VUE 3.
Hence, by recursive application of the above inequality and noting that EY = 0, we obtain

(4.13) IE™ |3 < Ce*(HMM)At Y (14 CAL"H||VUL |5 < Ce* HMM)||U ||
k=1

This together with (4.7) gives (4.9).
Let Uy = X and Uj; = Z be solutions of Problem 4.1 with U;}fl given, then by substraction,
we get for all V € Xy,
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which can be rewrite as
(X = Z,V) 4+ At(A(2, tn, X)V(X — Z),VV) = At(Ag — A)(tn; Z,V) — At(Ag — A)(tn; X, V)
+ At([A(z, L, ) A(a: tn, X)|VZ,VV).
Taking V = X — Z in the above equation and using (4.11), we get
1X = Z|Ig + ALV (X = 2)[[5 < n(M)AL|V(X = Z)|[§ + LAV Z |z | X = Z[ol V(X = Z)l|o.
After a kickback of [|[V(X — Z)||o, we obtain
L2At

(4.14) [IX = Z|lg + (\/2)At| V(X = 2)[[§ < n(MDAHIV(X = Z) ][5+ == V271X = ZII5.
It follows from (4.12) and (4.13) that
At|VE™|2 < C(AL|E™2 + |E" 1|2 + Ate?(HMM)) < Ce?(HMM).
This together with (4.8) and the inverse inequality give
AtV Z| L < K1+ CHTYALY?|VE™|o < K1 + CH 'e(HMM).
Substituting the above inequality into (4.14), we get
IX = Z|3 + (\W2)AHV(X = 2)|E < a(M)AYV(X - )|+ (L2M2/N)|X — 2|2

with M = K7 + CH~'e(HMM). Using (4.10) and (4.11), we get X = Z, i.e. the HMM solution
is locally unique. (I

Remark 4.4. Conditions (4.10) and (4.11) show that the HMM solution may not be unique
if the estimating data procedure is not accurate enough. This is indeed the case even if the
homogenized solution U is unique. We refer to [3] for related discussion on the approximation of
the quasilinear elliptic problems.

To simplify the presentation, we will show how to estimate e(HMM) when (4.3) is changed
slightly to

0p® — V- (aE (x,t, V(J:K))V ) =0 in Q,,
(4.15) =V on Ols x Ty,
|t tn Va

and Ay is changed to
Ap(ty; VW) = Y |K|][ Vs - af(z,t, V(zk))Vor.
KeTy
Estimating e(HMM) with cell problem (4.3) is more involved and we will address it in a forth-

coming paper.

Theorem 4.5. If we assume that a®(z,t,u®) = a(z, z /e, t,u) with a(x,y,t,p) periodic in y with
period Y, and the cell problem (4.15) is employed, then

(4.16) e(HMM) < (5 + ( 5)1/2 + 121,32‘”(7’“ + 1/2))

If 6+ (e/8)Y2 + 1, + /7, 1/2)/At1/2, (64 (e/8)Y? + 1, + E/Tn )/H and At/H are sufficiently
small, then (4.10) and (4.11) hold.
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Proof. By the homogenization result in [4] and proceeding along the same line of (1.9), we may
get (4.16). The only modification lies in the fact that Ag is not symmetric, therefore, the
identity (3.13) is invalid, which actually accounts for the accuracy loss in (4.16).
To verify the validity of (4.10) and (4.11), we proceed in the same fashion of [17, Theorem
5.5]. Define
5

Ky =6+ (5)1/2+rn+

9
1/2°
Tn/

It follows from (4.16) that
L*M? < 2I*(K} + CH?K3) = 2L*C?(At + H? + (At/H)?) + CL*H2K3).

Therefore, there exists pg > 0 and p; > 0 such that if At, H At/H < po and K1/H < p1, we
get (4.10).

Next, proceeding in the same fashion of [17, Lemma 5.9], we may take n(M) = C(1 +
MAt='/2)K;. Invoking (4.16) once again, we obtain

n(M) < C(1 + K ATV, + CH A Y2K2
< C(14 COKy + Cu(H/AY? + AtV2 JH)K, + CH Y AEY2 K2,
Therefore, there exists a constant py such that if C; /AtY/? < py, we have n(M) < A/2. Finally,

let p = min(py, p2), if K1/At/2 K1/H < p and At, H,At/H < pg, then (4.10) and (4.11) hold
true. O

Remark 4.6. For the case when a® = a(x,xz/e,t,u®), a formal asymptotic expansion shows that
there is no oscillation in the temporal direction and u® plays a role of a parameter in the cell
problem. Taking into account these special features of the problem, we may employ the following
cell problem: For any s € R, let v5 be solution of

{ -V (a(x,tn, S)V’UE) =0 i Is,

(4.17)
vt =V on 0ls,

Define we similarly. For any s € R, we define Ag(xk,tn,s) as

VW - Ag(zk,tn,s)VV = ][ Vs - af(x, t,, s)Vui dz forW,V e Xp.
Is

Given Ag, we may get the following estimate for e(HMM) as:
€
< = ).
e(HMM) < C(5+ 5)

The details will be given elsewhere.

APPENDIX A. ERROR ESTIMATES FOR THE LOCALLY PERIODIC PARABOLIC HOMOGENIZATION
PROBLEMS

The homogenization procedure for the parabolic problem is by now well-understood, see [5, 6,
29] and the references therein. However, there are very few results concerning the error estimate
for the difference between u* and the homogenization solution U, or the difference between u®
and the first order approximation u§ and the second order approximation u§ (see (A.2) and (A.6)
for the definitions). In this appendix, we shall prove such error estimates for the locally periodic
parabolic homogenization problem [6, 8].
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As to the locally periodic parabolic homogenization problem, the homogenization matrix A is
given by (3.6). We have the following regularity estimate for the solution of (1.2) (see-[18]):

VU |l r2(0) + [D*Ullr2(0) < C (/I f]Ir2(0) + lluoll1),

(A1)
VOLU || L2(0) < C(|0cf |20y + lluoll2)-
Set
(A.2) ui:=U+ex - VU.

A direct calculation yields

( 81&)(%:1:/5,0 - (A 8U)(3;,t) + G(z,x/e,t)VU

Qi — ii A
J@xj J6$j
k

o LR
(A.3) + e (ai 8xj>(a:,x/5,t) P CRICEIEN)

0*U
aIkan7
where G = {g{}zjzl is defined as

_ O
gi (z,y,t): = (aij + aikl)(l’,y,ﬂ = Aij(z,1).
Oy
Obviously,
/gf(m,y, t)dy =0 and g{(:v, y,t) is periodic iny.
y

Notice that (9yigf (x,y,t) = 0 for j = 1,--- ,d, therefore, there exists a skew-symmetric matrix
a(z,y,t) = {ozfj(x,y,t)}ﬁjﬁkzl such that

gzj(xvyat) = a_azk(xvyat)v /agk(xayvt) dy =0.
Yk 7

Thus, we obtain

Roafe )5 = o o/ )5 ) —eady /2,05
(A4) - E%Oj]k (x,x/a,t)gTUj.
Let the corrector #° be the solution of

0° — V- (a(w,z/e,t)V6°) =0 in Q,

(A.5) 0° = —ex - VU on 0D x (0,T),
0°i—0 = —eX|i=0 - Vug in D.

Define
(A.6) ug: = uj + 6°.

We estimate u® — u§ in the following theorem.
Theorem A.l. Assume that ug € H*(D) and f € H*(0,T; L*(D)), then
sup [[(u® —u3)(t)llo + IV (u® — u5)|lL2(g)
0<t<T
(A7) < Ce([luollz + 11£llz2(0) + 10:£ 1 2(2))-
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Proof. For any ¢ € C(0,T; L*(D)) N L*(0,T; H} (D)) with ¢(z,0) = 0, we write the weak form
of (1.2) and (A.5) as

/(¢>85U +V¢- AVU) dz = /fgbdx and /((;58505 +V¢-a*V6) dz = 0.
D D D

Invoking (A.3) and the above equations, we obtain

/¢85(u€ —uj)dz + / Vo a*V(u® —uj)dx
D

D

(A.8) =—¢ [ 9s(x-VU)¢pdz— | V¢-GVUdz —¢ | V¢-a°V(x-VU)dz.
/ / /

In view of (A.4) and the fact that « is a skew-symmetric matrix, we get

/V¢-QVde=—5/(V¢-a:D2U+V¢-(V-Q)VU)d:v.
D D

Substituting the above identity into (A.8), we get

/85(u5 —ug)odr + / V¢ a*V(u® — uj)de
D

D

= —a/@s(x -VU)pdx — E/ng -a*V(x - VU)dx
D D
(A.9) +€/(V¢-a . D2U + V¢ (V- a)VU) da.
D
Taking ¢ = u® — u§ in the above identity since (u® — u§) € H}(D) and (u® — u§)|t—o = 0,
integrating from 0 to ¢ for any 0 < ¢ < T', we obtain

t

I = us)e 0l + ([ 190 = wlFas)” < ce( [ o1z + 1) as)
0

0

1/2

A combination of the above inequality and the regularity estimate (A.1) gives (A.7). O

In what follows, we turn to the estimates for the corrector and the first order approximation
u5. No error estimates for the correctors are available to the best of the author’s knowledge.

Theorem A.2. Assume that ug € H*(D) and f,0,f € L*(Q), then

sup 1w = u)) O)llo+V (" = ui)L2(0)

0<t<
(A.10) < CVe(lluoll2 + I fllz2c) + 19 f Nl 22(2))
and
(A11) sup [ = U)1)lo < CVE(fuolla+ 2@ + 190 llx(a)):

Proof. Define 9¢ € C§°(D), which equals 1 in D/Ds. and equals 0 in D, where
D.:={z € D|dist(z,0D) <e}.
Obviously, |Vy©| < C/e.
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Define w®: = U + ey°x - VU, obviously, w®(z,t) € Hi(D) for a.e.,t € (0,T]. A direct
calculation gives

sup |[|(uf — w) (@) L2(p) + IV (uf — wF)[|L2(q)
0<t<T

(A.12) < CVE(lluolly + VUl z2(0) + IVO:U || 2(0) + 1D*Ull £2(0))-
It remains to bound u® — w®, as that in the proof of (A.7), we have for any ¢ € C(0,T; L*(D)) N
L*(0,T; Hy(D)),

/8u—w¢dx+/v¢a (u® —w®)dx
:—5/6 VU¢w8d:E+E/V¢ a*V(x - VU)dzx

—a/v¢-a€(x-D2U)¢8dx—/r€-v¢dx,
D D
where ¢ is defined by
= VU - a°Vyx(¥® — 1) +eVy© - a®(xVU).

The terms except the last one in the right-hand side of of the above expansion can be easily
bounded by Ce(|0:U1 + |U|1 + |Ul2)||Volo-
By virtue of [21, Lemma 2.5], we get

Ul1.p,. < CVE(IUL+ [Ul2).

We thus bound r¢ as
[r<llo < C|U1,p,. < CVE(|UL +U]2).

Therefore, we get

/8S(u5 _w)pds +/v¢ V(U — w?)dz < CVE(UNL + UL + [U)[V 6o,

let ¢ = u® — w®, integrating the above inequality from 0 to ¢, we obtain

1 (u® = w)(®)II5 + /\/ IV (u = w3 < ll(u® = w)(,0)[13
0

t
o / (IVO.U 2 + VU2 + | D*U|2) ds
0

Using [|(u® —w®)(z,0)[lo < Celluoll1, we get

max (a7 = w) ()l + [V (0 — 020

< CVe(lluolly + VAU || 120y + |1D?UllL2(0))-

This inequality together with (A.12) and the regularity estimate (A.1) give the desired esti-
mate (A.10). The estimate (A.11) follows from (A.7) and (A.10). O

If U is smoother, then we may improve (A.11) to O(e).
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Corollary A.3. If VU € L>°(Q), then we have
(A.13) S ([ =) #)lo < Ce(lluollz + 1 fllz20) + 196 Fllz2(0) + VUl e (2))-

Proof. By maximum principle [20], we have

A4 65 (z,t)| < C VU (x,t
(A.14) (gglggl (2,8)] < 6(g§ggl (z, 1),

which together with (A.7) gives
<

sup |[|(u® = U)(t)]lo < sup [[(u® —u3)(®)llo+e sup [[(x VU)®#)[o+ sup [|6°(-t)llo
0<t<T 0<t<T 0<t<T 0<t<T

< Celluols + Il + 19620 + O gmas [VUC- 0l
+ Ce||[VU| p=(0)
< Ce(fluollz + I fllr2c) + 19 fllz2(0) + VU [ £ (0))-
This gives (A.13). O

Notice that (A.14) also holds true for the case when a® = a(z, z /e, t,t/e?). Therefore, we may
proceed as that in Lemma 3.3 to obtain the following estimate (A.15) for the corrector. But we
cannot obtain (A.10) since we cannot obtain (A.7) by the method herein.

Corollary A.4. Fora® = a(x,x/e,t,t/e?) with a(-,y, -, s) is periodic in y and s respectively with
periods Y and 1, if VU € L*°(Q), then we have

(A.15) IV6° || 2(0) < CVe(lluollz + [ £ll2(e) + 10ef Il L2y + IVU || L= (9))-

Remark A.5. In case of one-dimensional problem, the following error estimates are stated in [5,
pp. 43, Theorem 1].

IV(u® —u5)[[L20) < C(Me, V(@ = uf)llL2() < C(T)e.

It is not surprising that the error estimate for the first order approximation is O(e), since there
is no boundary layer for one-dimensional problem.
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