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Abstract. The heterogeneous multiscale method (HMM) is applied to various parabolic prob-

lems with multiscale coefficients. These problems can be either linear or nonlinear. Optimal

estimates are proved for the error between the HMM solution and the homogenized solution.

1. Introduction and Main Results

1.1. Generality. Consider the following parabolic problem:

(1.1)






∂tu
ε −∇ · (aε∇uε) = f in D × (0, T ) = :Q,

uε = 0 on ∂D × (0, T ),

uε|t=0 = u0.

Here ε is a small parameter that signifies the multiscale nature of the problem. We let D be a

bounded domain in R
d and T a positive real number. Problem of this type is interesting because

of its simplicity, its relevance to several important practical problems such as the flow in porous

media and the mechanical properties of composite materials. In contrast to the elliptic problems,

there may be oscillations in the temporal direction besides the oscillation in the spatial direction.

On the analytic side, the following fact is known about (1.1). In the sense of parabolic H-

convergence (see [25], [8], [12]), introduced with minor modification by Spagnolo and Colombini

under the name of G-convergence or PG-convergence (see [11], [22], [23], [24]), that for every

f ∈ L2(0, T ;H−1(D)) and u0 ∈ L2(D), the sequence {uε} the solutions of (1.1) satisfies

uε ⇀ U weakly in L2(0, T ;H1
0 (D)),

aε∇uε ⇀ A∇U weakly in L2(Q; Rd),

where U is the unique solution of the problem

(1.2)






∂tU −∇ · (A∇U) = f in Q,

U = 0 on ∂D × (0, T ],

U |t=0 = u0.
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In general, there is no explicit formulas for the effective matrix A.

Classical numerical methods for this problem are designed to resolve the full details of the fine

scale problem (1.1) and without taking into account the special features of the coefficient matrix

aε. In contrast, the modern multiscale methods are designed specifically for retrieving partial

information about uε with sublinear cost [16], i.e. the total cost grows sublinearly with the cost

of solving the full fine scale problem. To this end, the methods have to take the full advantage of

the special features of the problem such as scale separation, self-similarity of the solution. One

cannot hope to get an algorithm with sublinear cost for a fully general problem.

The heterogeneous multiscale method introduced in [15] is a general methodology for designing

sublinear algorithm by exploiting the scale separation and other special features of the problem.

HMM consists of two ingredients: An overall macroscopic scheme for macro variables on a macro

grid and estimating the missing macroscopic data from the microscopic model. The efficiency

of HMM lies in the ability to extract the missing macroscale data from microscale models with

minimum cost, by exploiting scale separation.

For (1.1), the macroscopic solver is chosen to be the standard piecewise linear finite element

method [10] over a macroscopic triangulation TH with mesh size H as the spatial solver, and the

backward Euler scheme as the temporal discretization. Many other conventional discretization

methods could be proper candidates as the macroscopic solver. For example, finite difference

method and Discontinuous Galerkin method have been employed as the macroscopic solver in [1]

and [9], respectively.

We formulate our method as follows. For 1 ≤ k ≤ n, let tk = k∆t with ∆t = T/n. Let U0
H =

QHu0 with QH the L2 projection operator from H1
0 (D) to XH , where XH is the macroscopic

finite element space. Let Uk
H ∈ XH be the solution of the problem

(1.3) (∂Uk
H , V ) +AH(tk;Uk

H , V ) = (fk, V ) for all V ∈ XH ,

where ∂Uk
H = (Uk

H − Uk−1
H )/∆t and fk = ∆t−1

∫ tk+∆t

tk
f(x, s) ds.

It remains to estimate the stiffness matrix, which amounts to evaluating the effective bilinear

form AH(tn;V,W ) for any V,W ∈ XH . We write AH as

AH(tn;V,W ) =

∫

D

∇W · AH(x, tn)∇V dx =
∑

K∈TH

∫

K

∇W · AH(x, tn)∇V dx

≃
∑

K∈TH

|K|∇W · AH(xK , tn)∇V,

where xK is the barycenter of K. We approximate AH(xK , tn) by solving the Cauchy-Dirichlet

problem:

(1.4)





∂tv
ε −∇ ·

(
aε∇vε

)
= 0 in (xK + Iδ) × (tn, tn + τn),

vε = V on ∂Iδ × (tn, tn + τn),

vε|t=tn
= V.

We then let

∇W · AH(xK , tn)∇V ≃ 1

τn|Iδ|

tn+τn∫

tn

∫

Iδ

∇wε · aε∇vε dxdt,

where τn denotes the micro simulation time evolves in n-th macro time step, and Iδ = δY with

the unit cell Y : = (−1/2, 1/2)d. For simplicity, we denote Iδ: = xK + Iδ, Tn: = (tn, tn + τn), and
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the cylinder Qn: = Iδ × Tn. We thus rewrite AH as

(1.5) AH(tn;V,W ): =
∑

K∈TH

|K|
|Qn|

∫

Qn

∇wε · aε∇vε dxdt.

In (1.4), we use the Dirichlet boundary condition and the Cauchy initial condition. One may

also use other boundary conditions and initial conditions. For example, we may use Neumann

or periodic boundary condition and periodic initial condition. In the case when aε = a(x, x/ε, t)

and a(x, y, t) is periodic in y, one can take Iδ to be xK + εY and impose the boundary/initial

conditions as vε − V is periodic on the boundary of the cylinder (xK + εY ) × (tn, tn + ε2).

So far, the algorithm is quite general. The saving compared with solving the full fine scale

problem comes from the fact that we may choose Iδ and {τk} much smaller than K and ∆t,

respectively. The size of the micro cell Iδ and the micro simulation time {τk} are mainly deter-

mined by the accuracy, the cost and the micro structure of aε. The main purpose of the error

analysis presented below is to help to assess the performance of the method and give a guidance

for the designing of the methods, namely, how we choose δ and {τk}, or types of cell problem.

Since HMM is based on standard macroscale numerical methods and uses the microscale model

only as a supplement, it is possible to analyze its stability and accuracy within the traditional

framework of numerical analysis. This has already been illustrated in [14, 15, 17] and will be

further elaborated in the present paper. Roughly speaking, we will show that HMM is stable

whenever the macroscopic solver is stable. The overall error between the HMM solution and the

homogenized solution is controlled by the accuracy of the macroscopic solver and the consistency

error emanates from the estimate of the macroscopic data from the microscopic model, which

will be denoted by e(HMM). Next we estimate e(HMM) for two cases. One is aε = a(x, x/ε, t)

with a(x, y, t) is periodic in y, and the other is aε = a(x, x/ε, t, t/ε2) with a(x, y, t, s) is periodic

in y and s.

We will always assume that aε(x, t) is symmetric and uniformly elliptic:

λI ≤ aε ≤ ΛI

for some λ,Λ > 0. We will use |·| to denote the abstract value of a scalar quantity and the

volume of a set.

Throughout this paper, the generic constant C is assumed to be independent of the microscale

ε, the mesh size H , the time step ∆t, the cell size δ and the micro simulation time {τk}n
k=1. We

use the summation convention.

1.2. Main results. Define

(1.6) e(HMM) = max
1≤k≤n

ek(HMM)

with

ek(HMM) = max
K∈TH

‖(A−AH)(xK , tk)‖,

where ‖ · ‖ denotes the Euclidean norm.

Our main results for the linear problem are as follows.

Theorem 1.1. Let U and Un
H be the solutions of (1.2) and (1.3), respectively. If U is sufficiently

smooth, then there exists a constant C that is independent of ε, δ, {τk}n
k=1, H,∆t, such that

‖Un
H − U(x, tn)‖0 + |||Un

H − U(x, tn)||| ≤ C
(
∆t+H2 + e(HMM)

)
,(1.7)

‖Un
H − U(x, tn)‖1 ≤ C

(
∆t+H + e(HMM)∆t−1/2

)
,(1.8)
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where ||| · ||| is the weighted space-time H1 norm that is defined for every V = {V k}n
k=1 with

V k ∈ X for k = 1, · · · , n as

|||V |||: =
( n∑

k=1

∆t‖∇V k‖2
0

)1/2

.

At this stage, no assumption on the form of aε is necessary. For Un
H to converge to U(x, tn),

i.e. e(HMM) → 0. U must be chosen as the solution of the homogenized equation, which we now

assume exists. To obtain qualitative estimate for e(HMM), we must make more assumptions on

aε.

We estimate e(HMM) for two special cases that depend on the estimate of the homogenized

problem (1.1) presented in the Appendix. The extension to other cases [2, 28] is beyond this

paper since it depends heavily on the qualitative estimates of the corresponding homogenization

problem that seem missing presently.

Theorem 1.2. For aε = a(x, x/ε, t) with a(x, y, t) is periodic in y with period Y , and the cell

problem (1.4) is solved with Dirichlet boundary condition and Cauchy initial condition, we have

(1.9) e(HMM) ≤ C
[
δ +

ε

δ
+ max

1≤k≤n

(
τk +

ε2

τk

)]
.

Another important case for which the estimate of e(HMM) can be obtained is the so called

self-similar case, i.e. aε = a(x, x/ε, t, t/ε2). In this case, we have

Theorem 1.3. For aε = a(x, x/ε, t, t/ε2) with a(x, y, t, s) is periodic in yand s with period Y

and 1, respectively, and the cell problem (1.4) is solved with Dirichlet boundary condition and

Cauchy initial condition, we have

(1.10) e(HMM) ≤ C
[
δ +

(ε
δ

)1/2

+ max
1≤k≤n

(
τk +

ε

τ
1/2
k

)]
.

Similar results with some modification hold for the nonlinear problems. The details are given

in § 4.

1.3. Parameter choices. In this part, we analyze the sources of each terms appear in the upper

bound of e(HMM). It is clear that the term ε/δ comes from the boundary condition, while the

term ε2/τk comes from the initial condition. It is clear to see the corresponding terms vanishes

if we let δ/ε, τk/ε
2 ∈ N and vε − V be periodic on ∂Qn.

For aε = a(x, x/ε, t), we may choose δ = M1ε ≃ ε1/2, and τk = M2ε
2 ≃ ε for k = 1, · · · , n.

With such choice of parameters, we get

(1.11) e(HMM) ≤ Cε1/2.

For aε = a(x, x/ε, t, t/ε2), we may choose δ = M1ε ≃ ε1/3, and τk = M2ε
2 ≃ ε2/3 for

k = 1, · · · , n. With such choice of parameters, we have the overall estimate for e(HMM) as

(1.12) e(HMM) ≤ Cε1/3.

Actually, classical homogenization result suggests that there is no oscillation in the temporal

direction when aε = a(x, x/ε, t). Therefore, we may replace (1.4) by an elliptic cell problem:

(1.13)

{
−∇ ·

(
aε(·, tn)∇vε

)
= 0 in Iδ,

vε = V on ∂Iδ,
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Define wε in the same way and AH is defined as

∇W · AH(xK , tn)∇V =
1

|Iδ|

∫

Iδ

∇wε · aε(·, tn)∇vε dx.

Corollary 1.4. For aε = a(x, x/ε, t) with a(x, y, t) is periodic in y with period Y , if we use the

cell problem (1.13), then

(1.14) e(HMM) ≤ C
(
δ +

ε

δ

)
.

The proof of (1.14) is essentially the same as the elliptic case as we have done in [17]. Actually,

it may also follow the proof of Theorem 1.2 literally, we omit the proof.

2. Analysis of the Method

2.1. Preliminaries and notations. We introduce some notations. Denote by L2(D), Hm(D)

and Hm
0 (D),m ∈ Z the usual Lebesgue space and Sobolev spaces. (·, ·)D and ‖ · ‖m,D will be

denoted as the L2 inner-product and norms, respectively, the subscript will be omitted if no

confusion can occur.
∫
−

D
u dx is defined as the mean value of u over D. For any Banach space U

with norm ‖ · ‖U , the space L2(0, T ;U) consists of all measurable functions u : [0, T ] → U with

‖u‖L2(0,T ;U): =
(∫ T

0

‖u(t)‖2
U dt

)1/2

.

The space Hm(0, T ;U) comprises of all functions dku/dtk ∈ L2(0, T ;U) for 0 ≤ k ≤ m, which is

equipped with the norm

‖u‖Hm(0,T ;U): =
(∫ T

0

∑

0≤k≤m

‖dku/dtk‖2
U dt

)1/2

.

The space C([0, T ];U) comprises of all continuous functions u : [0, T ] → U with

‖u‖C([0,T ];U) = max
0≤t≤T

‖u(t)‖U .

For vectors x = (x1, x2) and y = (y1, y2) ∈ R
2, x ⊗ y is a 2 × 2 matrix with elements

(x ⊗ y)ij := xiyj . A matrix product is defined by A : B = tr(ATB), where tr(A) is the trace of

a 2 × 2 matrix A.

The following simple result underlines the stability of HMM for problem (1.1). A similar one

for the elliptic problem can be found in [17, Lemma 1.9].

Lemma 2.1. Given a domain Ω ∈ R
d, T > 0 and a linear function V , let ϕ be the solution of

(2.1)






∂tϕ−∇ ·
(
a∇ϕ

)
= 0 in Ω × (0, T ],

ϕ = V on ∂Ω × (0, T ],

ϕ|t=0 = V,

where a =
(
aij

)
satisfies

λI ≤ a ≤ ΛI a.e. (x, t) ∈ Ω × (0, T ].

Then for any t > 0, we have

(2.2) ‖∇V ‖0,Ω ≤ ‖∇ϕ(x, t)‖0,Ω and
( t∫

0

∫

Ω

∇ϕ · a∇ϕ
)1/2

≤
( t∫

0

∫

Ω

∇V · a∇V
)1/2

.
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Proof. Notice that ϕ = V on the boundary of Ω, using the fact that ∇V is a constant in Ω, and

integration by parts leads to
∫

Ω

∇(ϕ− V )(x, t)∇V (x) dx = 0 for any t > 0,

which implies ∫

Ω

|∇ϕ(x, t)|2 dx =

∫

Ω

|∇V (x)|2 dx+

∫

Ω

|∇(ϕ − V )(x, t)|2 dx.

This gives the first result of (2.2). Multiplying the first equation of (2.1) by ϕ−V and integrating

by parts, we obtain

1

2

∫

Ω

|ϕ(x, t) − V |2 dx+

t∫

0

∫

Ω

∇ϕ(x, s) · a(x, s)∇ϕ(x, s) dxds

=

t∫

0

∫

Ω

∇V (x) · a(x, s)∇ϕ(x, s) dxds.(2.3)

By Cauchy-Schwartz inequality,

∫

Ω

∇V (x) · a(x, s)∇ϕ(x, s) dxds ≤
( t∫

0

∫

Ω

∇ϕ(x, s) · a(x, s)∇ϕ(x, s) dxds
)1/2

×
( t∫

0

∫

Ω

∇V (x) · a(x, s)∇V (x) dxds
)1/2

.

A combination of the above two gives the second part of (2.2). �

Remark 2.2. For this result, the coefficient a =
(
aij

)
may depend on the solution, i.e. (2.1)

may be nonlinear.

2.2. Generality. Using (2.2) with Ω = Iδ, for any V ∈ XH and 1 ≤ k ≤ n, we have

AH(tk;V, V ) =
∑

K∈TH

|K|
∫
−

Qk

∇vε · aε∇vε ≥ λ
∑

K∈TH

|K|
∫
−

Qk

|∇vε|2

≥ λ
∑

K∈TH

|K|
∫
−

Qk

|∇V |2 = λ
∑

K∈TH

∫

K

|∇V |2

= λ‖∇V ‖2
0.(2.4)

Similarly, we get

AH(tk;V,W ) ≤
∑

K∈TH

|K|
(∫
−

Qk

∇vε · aε∇vε
)1/2(∫

−
Qk

∇wε · aε∇wε
)1/2

≤
∑

K∈TH

|K|
(∫
−

Qk

∇V · aε∇V
)1/2(∫

−
Qk

∇W · aε∇W
)1/2

≤ Λ
∑

K∈TH

|K| |∇V | |∇W | = Λ
∑

K∈TH

(∫

K

|∇V |2
)1/2(∫

K

|∇W |2
)1/2

≤ Λ‖∇V ‖0‖∇W‖0.(2.5)
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The stability of the method is included in the following lemma. The proof is standard by (2.4)

and (2.5), we refer to [26] for details.

Lemma 2.3. There exists a constant C such that

‖Un
H‖0 + |||Un

H ||| ≤ C
(
‖u0‖0 +

( n∑

k=1

∆t‖fk‖2
−1,h

)1/2)
,(2.6)

‖∇Un
H‖0 ≤ C

(
‖u0‖1 +

( n∑

k=1

‖fk‖2
−1,h

)1/2)
,(2.7)

where ‖ · ‖−1,h is defined for any G ∈ L2(D) as

‖G‖−1,h = sup
V ∈XH

(G, V )

‖∇V ‖0
.

To prove Theorem 1.1, we define an auxiliary function Ũn
H ∈ XH as: Let Ũ0

H = QHu0, and

for 1 ≤ k ≤ n, Ũk
H ∈ XH satisfies

(2.8) (∂Ũk
H , V ) +A(tk; Ũk

H , V ) = (fk, V ) for all V ∈ XH ,

where A is defined as A(tk;V,W ) =
∑

K∈TH
|K|∇W · A(xK , tk)∇V for all V,W ∈ XH .

The error estimate for the above problem is well-known [26]:

(2.9) ‖Ũn
H − U(x, tn)‖0 + |||Ũn

H − U(x, tn)||| ≤ C(∆t+H2), ‖Ũn
H − U(x, tn)‖1 ≤ C(∆t+H).

Proof for Theorem 1.1 For 1 ≤ k ≤ n, define Ek: = Uk
H − Ũk

H . For any V ∈ XH , it is clear that

(2.10) (∂Ek, V ) +A(tk;Ek, V ) = (F k, V ),

where (F k, V ): = A(tk;Uk
H , V ) −AH(tk;Uk

H , V ). By definition,

‖F k‖−1,h ≤ ek(HMM)‖∇Uk
H‖0.

By (2.6) we have, since E0 = 0,

(2.11) ‖En‖0 + |||En||| ≤ Ce(HMM)|||Un
H ||| ≤ Ce(HMM).

Combining the above inequality and the first part of (2.9), we obtain (1.7).

Repeating the above steps, using (2.7) and (2.6), we obtain

‖∇En‖0 ≤ Ce(HMM)∆t−1/2|||Un
H ||| ≤ Ce(HMM)∆t−1/2.

The estimate (1.8) follows from the above estimate and the second part of (2.9). �

Remark 2.4. Note that En ∈ XH for any n, using (2.11) and the inverse estimate [10], we get

‖En‖1 ≤ (C/H)‖En‖0 ≤ Ce(HMM)/H,

which together with the second part of (2.9) leads to

(2.12) ‖Un
H − U(x, tn)‖1 ≤ C(H + ∆t+ e(HMM)/H).
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3. Estimating e(HMM)

In this section, we estimate e(HMM) for two cases, one is aε = a(x, x/ε, t) and the other is aε =

a(x, x/ε, t, t/ε2). In both cases, the cell problem (1.4) is solved with Dirichlet boundary condition

and Cauchy initial condition. We will use aε
K,n = a(xK , x/ε, tn) or aε

K,n = a(xK , x/ε, tn, t/ε
2)

and χK,n = χ(xK , x/ε, tn) or χK,n = χ(xK , x/ε, tn, t/ε
2) for simplicity, where χ is the solution

of certain cell problems (cf. (3.4) and (3.15)).

Estimating e(HMM) consists of two steps. First, we estimate ‖Ã−A‖. The auxiliary operator

Ã is defined by

(3.1) ∇W · Ã(xK , tn)∇V =

∫
−

Qn

∇Ŵ ε · aε
K,n∇V̂ ε for any W,V ∈ XH ,

where

V̂ ε = V + εχK,n · ∇V and Ŵ ε = W + εχK,n · ∇W.
Next we estimate ‖Ã − AH‖. This is achieved by

∇W · (Ã − AH)(xK , tn)∇V =

∫
−

Qn

[∇Ŵ ε · aε
K,n∇(V̂ ε − vε) + ∇V̂ ε · aε

K,n∇(Ŵ ε − wε)]

−
∫
−

Qn

[∇wε · (aε − aε
K,n)∇vε + ∇(wε − Ŵ ε) · aε

K,n∇(vε − V̂ ε)].(3.2)

Finally, estimating e(HMM) follows from the triangle inequality.

3.1. Estimating e(HMM) for the case when aε = a(x, x/ε, t). Denote by v̂ε the solution

of (1.4) with aε replaced by aε
K,n. By standard a priori estimate and (2.2), we have

(3.3) ‖∇(vε − v̂ε)‖L2(Qn) ≤ C(δ + τn)‖∇vε‖L2(Qn) ≤ C(δ + τn)‖∇V ‖L2(Qn).

For j = 1, · · · , d, χ = {χj}d
j=1 is periodic in y with period Y and satisfies

(3.4)
∂

∂yi

(
aik

∂χj

∂yk

)
(x, y, t) = −

( ∂

∂yi
aij

)
(x, y, t) in Y,

∫

Y

χj(x, y, t) dy = 0.

This problem is solvable and there exists a constant C such that for j = 1, · · · , d,
(3.5) |∇yχ

j(x, y, t)| ≤ C for all (x, t) ∈ Q and y ∈ Y.

The effective matrix is given by

(3.6) Aij(x, t) =

∫
−

Y

(
aij + aik

∂χj

∂yk

)
(x, y, t) dy i, j = 1, · · · , d.

A straightforward calculation gives

(3.7) ∇ ·
(
aε

K,n∇V̂ ε
)

= 0 and ∇ ·
(
aε

K,n∇Ŵ ε
)

= 0.

Define θε = v̂ε − V̂ ε, which obviously satisfies

(3.8)






∂tθ
ε −∇ ·

(
aε

K,n∇θε
)

= 0 in Qn,

θε = −εχK,n · ∇V on ∂Iδ × Tn,

θε|t=tn
= −εχK,n · ∇V.

Lemma 3.1. Let θε be solution of (3.8). There exists a constant independent of ε, δ and τn such

that

(3.9) ‖∇θε‖L2(Qn) ≤ C
( ε

τ
1/2
n

+
(ε
δ

)1/2)
‖∇V ‖L2(Qn).
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Proof. Multiplying both sides of (3.8)1 by θε
1: = θε + (V̂ ε − V )(1 − ρε) and integrating over Iδ,

we obtain

(3.10)
1

2

∂

∂t

∫

Iδ

|θε
1|2 +

∫

Iδ

∇θε
1 · aε

K,n∇θε
1 =

∫

Iδ

∇(θε
1 − θε) · aε

K,n∇θε
1,

where the cut-off function ρε ∈ C∞
0 (Iδ), |∇ρε| ≤ C/ε and

ρε =

{
1 if dist(x, ∂Iδ) ≥ 2ε,

0 if dist(x, ∂Iδ) ≤ ε.

It is clear to see

|
∫

Iδ

∇(θε
1 − θε) · aε

K,n∇θε
1| ≤

(∫

Iδ

∇(θε
1 − θε) · aε

K,n∇(θε
1 − θε)

)1/2(∫

Iδ

∇θε
1 · aε

K,n∇θε
1

)1/2

.

Substituting the above inequality into (3.10), we obtain

∂

∂t

∫

Iδ

|θε
1|2 +

∫

Iδ

∇θε
1 · aε

K,n∇θε
1 ≤

∫

Iδ

∇(θε
1 − θε) · aε

K,n∇(θε
1 − θε).

Integrating the above inequality over Tn, we get

λ‖∇θε
1‖2

L2(Qn) ≤ ‖θε
1(x, tn)‖2

L2(Iδ) + Λ‖∇(θε
1 − θε)‖2

L2(Qn),

which implies

‖∇θε‖L2(Qn) ≤ λ−1/2‖θε
1(x, tn)‖L2(Iδ) +

(
1 + (Λ/λ)1/2

)
‖∇(θε

1 − θε)‖L2(Qn).

A direct calculation gives

‖∇(θε
1 − θε)‖L2(Qn) ≤ C

(ε
δ

)1/2

‖∇V ‖L2(Qn),

‖θε
1(x, tn)‖L2(Iδ) = ε‖ρε(V̂ ε − V )‖L2(Iδ) ≤ Cε‖∇V ‖L2(Iδ).

A combination of the above three inequalities leads to (3.9). �

Next lemma concerns estimating ‖Ã − A‖.

Lemma 3.2. There exists a constant C such that

(3.11) ‖(Ã − A)(xK , tn)‖ ≤ C
ε

δ
.

Proof. Denote by Iκε = κY , where κ is the integer part of δ/ε, i.e. κ = ⌊δ/ε⌋, integrating by

parts and using (3.7), we get
∫
−

Iκε

∇(Ŵ ε −W ) · aε
K,n∇V̂ ε = 0.

Using the expression of V̂ ε and (3.6), we obtain
∫
−

Iκε

∇W · aε
K,n∇V̂ ε = ∇W · A(xK , tn)∇V.

It follows from the above two equations that
∫
−

Iκε

∇Ŵ ε · aε
K,n∇V̂ ε = ∇W · A(xK , tn)∇V.

Since V̂ ε, Ŵ ε and aε
K,n are independent of t, we write Ã as

∇W · Ã(xK , tn)∇V =

∫
−

Iδ

∇Ŵ ε · aε
K,n∇V̂ ε for any W,V ∈ XH ,
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In follows from the above equation and (3.5) that

|∇W · (A− Ã)(xK , tn)∇V | ≤
(
1 − |Iκε|

|Iδ|
)∫
−

Iκε

|∇W · aε
K,n∇V̂ ε| + |Iδ|−1

∫

Iδ\Iκε

|∇W · aε
K,n∇V̂ ε|

≤ C
ε

δ
|∇W | |∇V |,(3.12)

which in turn implies (3.11). �

Proof of (1.9) Using the first part of (3.7) and noting [Ŵ ερε − wε + W (1 − ρε)](x, t) = 0 for

(x, t) ∈ ∂Iδ × Tn, integrating by parts, we have
∫
−

Qn

∇V̂ ε · aε
K,n∇(Ŵ ερε − wε +W (1 − ρε)) = 0.

Therefore, we get
∫
−

Qn

∇V̂ ε · aε
K,n∇(Ŵ ε − wε) =

∫
−

Qn

∇V̂ ε · aε
K,n∇[(Ŵ ε −W )(1 − ρε)]

=

∫
−

Iδ

∇V̂ ε · aε
K,n∇[(Ŵ ε −W )(1 − ρε)].

Symmetrically, using the second part of (3.7), we have

(3.13)

∫
−

Qn

∇Ŵ ε · aε
K,n∇(V̂ ε − vε) =

∫
−

Iδ

∇Ŵ ε · aε
K,n∇[(V̂ ε − V )(1 − ρε)].

Using the above two identities, we rewrite (3.2) as

∇W · (Ã − AH)(xK , tn)∇V

=

∫
−

Iδ

[
∇Ŵ ε · aε

K,n∇[(V̂ ε − V )(1 − ρε)] + ∇V̂ ε · aε
K,n∇[(Ŵ ε −W )(1 − ρε)]

]

−
∫
−

Qn

[∇wε · (aε − aε
K,n)∇vε + ∇(wε − Ŵ ε) · aε

K,n∇(vε − V̂ ε)] = :I1 + I2.(3.14)

A direct calculation gives

|I1| ≤ C
ε

δ
|∇W | |∇V |.

It follows from (3.3) and (3.9) that

‖∇(vε−V̂ ε)‖L2(Qn) ≤ ‖∇(vε−v̂ε)‖L2(Qn)+‖∇θε‖L2(Qn) ≤ C
(
δ+τn+

(ε
δ

)1/2

+
ε

τ
1/2
n

)
‖∇V ‖L2(Qn).

Similarly, we have

‖∇(wε − Ŵ ε)‖L2(Qn) ≤ C
(
δ + τn +

(ε
δ

)1/2

+
ε

τ
1/2
n

)
‖∇W‖L2(Qn).

Using the above two inequalities, we obtain

|I2| ≤ C
δ + τn
|Qn|

‖∇wε‖L2(Qn)‖∇vε‖L2(Qn) +
Λ

|Qn|
‖∇(wε − Ŵ ε)‖L2(Qn)‖∇(vε − V̂ ε)‖L2(Qn)

≤ C|Qn|−1
(
δ + τn +

ε

δ
+
ε2

τn

)
‖∇W‖L2(Qn)‖∇V ‖L2(Qn)

= C
(
δ + τn +

ε

δ
+
ε2

τn

)
|∇W | |∇V |.
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Summing up the estimates for I1 and I2, we obtain

‖(Ã − AH)(xK , tn)‖ ≤ C
(
δ + τn +

ε

δ
+
ε2

τn

)
,

which together with (3.11) gives (1.9). �

3.2. Estimating e(HMM) for the case when aε = a(x, x/ε, t, t/ε2). Next we estimate

e(HMM) for the case aε = a(x, x/ε, t, t/ε2) when a(x, y, t, s) is periodic in y and s with pe-

riod Y and 1, respectively. We assume that (1.4) is solved with Dirichlet boundary condition

and Cauchy initial condition. For j = 1, · · · , d, χ(x, y, t, s) = {χj}d
j=1 is periodic in y and s with

periods Y and 1, respectively, and satisfies

(3.15) ∂sχ
j − ∂yi

(
aik

∂χj

∂yk

)
(x, y, t, s) = (∂yi

aij)(x, y, t, s) and

1∫

0

∫

Y

χj(x, y, t, s) dy ds = 0.

The existence of χj is classical since

1∫

0

∫

Y

(∂yi
aij)(x, y, t, s) dy ds = 0.

By [20], there exists a constant C such that for j = 1, · · · , d,

(3.16) |χj(x, y, s, t)| + |∇yχ
j(x, y, s, t)| ≤ C for all (x, t) ∈ Q, y ∈ Y and s ∈ (0, 1).

Denote by v̂ε the solution of (1.4) with aε replaced by aε
K,n. Using the standard a priori

estimate and Lemma 2.1, we have

(3.17) ‖∇(vε − v̂ε)‖L2(Qn) ≤ C(δ + τn)‖∇V ‖L2(Qn).

It is easy to verify that

(3.18) ∂tV̂
ε −∇ ·

(
aε

K,n∇V̂ ε
)

= 0 and ∂tŴ
ε −∇ ·

(
aε

K,n∇Ŵ ε
)

= 0,

and

(3.19)






∂tθ
ε −∇ ·

(
aε

K,n∇θε
)

= 0 in Qn,

θε = −εχK,n · ∇V on ∂Iδ × Tn,

θε|t=tn
= −ε(χK,n · ∇V )|t=tn

.

For the correction θε, we have the following estimate (cf. (3.9)).

Lemma 3.3. There exists a constant C independent of ε, δ and τn such that

(3.20) ‖∇θε‖L2(Qn) ≤ C
((ε

δ

)1/2

+
ε

τ
1/2
n

)
‖∇V ‖L2(Qn).

The proof of (3.20) is essentially the same as Lemma 3.1. The difference lies in the second

term in the right-hand side of the equation below.

Proof. Multiplying both sides of (3.19)1 by θε
1: = θε +(V̂ ε −V )(1−ρε) and integrating by parts,

we get

(3.21)
1

2

∂

∂t

∫

Iδ

|θε
1|2 +

∫

Iδ

∇θε
1 · aε

K,n∇θε
1 =

∫

Iδ

∇θε
1 · aε∇(θε

1 − θε) +
1

2

∫

Iδ

θε
1∂t(θ

ε
1 − θε).
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It follows from (3.15) that
∫

Iδ

θε
1∂t(θ

ε
1 − θε) = ε−1

∫

Iδ

∂sχK,n · ∇V (1 − ρε)θε
1

= ε−1

∫

Iδ

∇y · (aε
K,n(I + ∇yχK,n))∇V (1 − ρε)θε

1

=

∫

Iδ

∇ · (aε
K,n(I + ∇yχK,n))∇V (1 − ρε)θε

1.

Integrating by parts, we obtain
∫

Iδ

θε
1∂t(θ

ε
1 − θε) = −

∫

Iδ

∇(θε
1(1 − ρε)∇V ) : aε

K,n(I + ∇yχK,n)

= −
∫

Iδ

(1 − ρε)[∇θε
1 ⊗∇V ] : aε

K,n(I + ∇yχK,n)

+

∫

Iδ

θε
1∇ρε · aε

K,n(I + ∇yχK,n)∇V.(3.22)

Using (3.16), we bound the first term in the right-hand side of the above equation as

|
∫

Iδ

(1 − ρε)[∇θε
1 ⊗∇V ] : aε

K,n(I + ∇yχK,n)|

≤ Λ max
(x,t)∈Qn

‖I + ∇yχK,n‖ ‖∇θε
1‖L2(Iδ)‖∇V ‖L2(Iδ\I(κ−2)ε))

≤ C
(ε
δ

)1/2

‖∇θε
1‖L2(Iδ)‖∇V ‖L2(Iδ).

By maximum principle [20], we have

(3.23) max
(x,t)∈Qn

|θε(x, t)| ≤ ε max
(x,t)∈Qn

|χK,n(x, t)| |∇V |.

We thus get

max
(x,t)∈Qn

|θε
1(x, t)| ≤ max

(x,t)∈Qn

(
|θε(x, t)| + ε|χK,n(x, t)||∇V |

)
≤ 2ε max

(x,t)∈Qn

|χK,n(x, t)||∇V |.

Therefore, we bound the second term in the right-hand side of (3.22) as

|
∫

Iδ

θε
1∇ρε · aε

K,n(I + ∇yχK,n)∇V | ≤ 2Λ max
(x,t)∈Qn

‖I + ∇yχK,n(x, t)‖
∫

Iδ

|∇V |2|ε∇ρε|

≤ C
ε

δ
‖∇V ‖2

L2(Iδ).

Substituting the above two estimates into (3.21), we obtain

1

2

∂

∂t

∫

Iδ

|θε
1|2 +

∫

Iδ

∇θε
1 · aε

K,n∇θε
1 ≤ 1

2

∫

Iδ

∇θε
1 · aε

K,n∇θε
1 +

∫

Iδ

∇(θε − θε
1) · aε

K,n∇(θε − θε
1)

+ C
ε

δ
‖∇V ‖2

L2(Iδ).

Therefore, integrating the above inequality over Tn, we obtain

‖∇θε
1‖L2(Qn) ≤ C

(
‖θε

1(x, tn)‖L2(Iδ) + ‖∇(θε − θε
1)‖L2(Qn) +

(ε
δ

)1/2

‖∇V ‖L2(Qn)

)
,

which in turn implies

‖∇θε‖L2(Qn) ≤ C
(
‖θε

1(x, tn)‖L2(Iδ) + C‖∇(θε − θε
1)‖L2(Qn) + C

(ε
δ

)1/2

‖∇V ‖L2(Qn)

)
.
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A direct calculation gives

‖θε
1(x, tn)‖L2(Iδ) ≤ Cε‖∇V ‖L2(Iδ),

‖∇(θε − θε
1)‖L2(Qn) ≤ C

(ε
δ

)1/2

‖∇V ‖L2(Qn).

A combination of the above three inequalities leads to (3.20). �

Similar to Lemma 3.2, we have

Lemma 3.4. There exists a constant C such that

(3.24) ‖(A− Ã)(xK , tn)‖ ≤ C
(ε
δ

+
ε2

τn

)
.

Proof. Let ℓ: = ⌊τn/ε2⌋, and Q̃n: = Iκε × (tn, tn + ℓε2). The key to the proof is the following

observation: For any V,W ∈ XH , we have

(3.25) ∇W · A(xK , tn)∇V : =

∫
−eQn

∇Ŵ ε · aε
K,n∇V̂ ε.

Integration by parts and using the first part of (3.18), we obtain

∫
−eQn

∇(Ŵ ε −W ) · aε
K,n∇V̂ ε = −

∫
−eQn

(Ŵ ε −W )∇ · (aε
K,n∇V̂ ε) = −

∫
−eQn

(Ŵ ε −W )∂tV̂
ε

= −
∫
−eQn

(Ŵ ε −W )∂t(V̂
ε − V ).

A direct calculation leads to

∫
−eQn

∇W · aε
K,n∇V̂ ε = ∇W · A(xK , tn)∇V.

Adding up the above two equations, we obtain

∇W · A(xK , tn)∇V −
∫
−eQn

∇Ŵ ε · aε
K,n∇V̂ ε =

∫
−eQn

(Ŵ ε −W )∂t(V̂
ε − V )

Exchanging W and V and notice that aε and A are symmetric, we get

∇W · A(xK , tn)∇V −
∫
−eQn

∇Ŵ ε · aε
K,n∇V̂ ε =

∫
−eQn

(V̂ ε − V )∂t(Ŵ
ε −W ).

Adding up the above two equations and using the explicit expressions of V̂ ε and Ŵ ε, we get

∇W · A(xK , tn)∇V −
∫
−eQn

∇Ŵ ε · aε
K,n∇V̂ ε =

1

2

∫
−eQn

∂t[(V̂
ε − V )(Ŵ ε −W )] = 0,

which gives (3.25).

By (3.25), proceeding as that in (3.12) and using (3.16), we get (3.24). �
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Proof for (1.10) It follows from (3.2), (3.17) and Lemma 3.3 that

|∇W · (Ã − AH)(xK , tn)∇V | ≤ C
(
δ + τn +

(ε
δ

)1/2

+
ε

τ
1/2
n

)
|∇W | |∇V |

+ C
δ + τn
|Qn|

‖∇wε‖L2(Qn)‖∇vε‖L2(Qn)

+
Λ

|Qn|
‖∇(wε − Ŵ ε)‖L2(Qn)‖∇(vε − V̂ ε)‖L2(Qn)

≤ C
(
δ + τn +

(ε
δ

)1/2

+
ε

τ
1/2
n

)
|∇W ||∇V |,

which implies

(3.26) ‖(Ã − AH)(xK , tn)‖ ≤ C
(
δ + τn +

(ε
δ

)1/2

+
ε

τ
1/2
n

)
.

This estimate together with (3.24) leads to (1.10). �

Remark 3.5. One may wonder whether the estimate (1.10) can be improved to (1.9). This is

actually not the case due to (3.26).

4. Nonlinear Problem

We consider the following nonlinear problem

(4.1)





∂tu
ε −∇ ·

(
aε

(
x, t, uε

)
∇uε

)
= f in Q,

uε = 0 on ∂D × (0, T ),

uε|t=0 = u0.

We assume that aε(x, t, uε) satisfies

λ|ξ|2 ≤ aε
ij(x, t, z)ξiξj ≤ Λ|ξ|2 for all ξ ∈ R

d and for all (x, t) ∈ Q and z ∈ R

with 0 < λ ≤ Λ. Moreover, we assume that aε(x, t, z) is Lipschitz continuous in z uniformly

with respect to x and t. The existence of uε is classic. Similar problem in the elliptic case has

been discussed in [7], the extension to (4.1) is straightforward. We refer to [19] for more general

nonlinear problems. The homogenized problem, if it exists, is of the following form:

(4.2)





∂tU −∇ ·
(
A

(
x, t, U

)
∇U

)
= f in Q,

U = 0 on ∂D × (0, T ),

U |t=0 = u0.

To formulate HMM, for any V ∈ XH , define vε to be the solution of

(4.3)






∂tv
ε −∇ ·

(
aε

(
x, t, vε

)
∇vε

)
= 0 in Qn,

vε = V on ∂Iδ × Tn,

vε|t=tn
= V.

We can define wε similarly.

For any V,W ∈ XH , we define

∇W · AH(xK , tn, V )∇V : =

∫
−

Qn

∇wε · aε(x, t, vε)∇vε,

and AH(tn;V,W ) =
∑

K∈TH
|K|∇W · AH(xK , tn, V )∇V .

The HMM solution is given by the problem:
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Problem 4.1. Let U0
H = QHu0, for k = 1, · · · , n, find Uk

H ∈ XH such that

(4.4) (∂Uk
H , V ) +AH(tk;Uk

H , V ) = (fk, V ) for all V ∈ XH .

Remark 4.2. We only consider a special nonlinear problem, the algorithm applies to much

more general nonlinear problem, cf. [19], which together with realistic application will be dealt in

a forthcoming paper.

For any V,W ∈ XH , we define

Ek(V,W ): = ∇W · (AH −A)(xK , tk, V )∇V,
and

e(HMM) = max
K∈TH ,V ∈XH ,

1≤k≤n

Ek(V,W )

|∇W ||∇V | .

Proceeding along the same line of Lemma 2.1, we get the same estimate for vε. Notice that

aε in the second part of (2.2) depends on the solution vε. Obviously, for any V ∈ XH , we have

(4.5) AH(tk;V, V ) ≥ λ‖∇V ‖2
0.

By (4.5), it is easy to derive a stability result that is similar to (2.6) and (2.7).

Similar to the second part of (2.2), for any W ∈ XH , we have

( t∫

0

∫

Ω

∇wε · aε(x, t, wε)∇wε
)1/2

≤
( t∫

0

∫

Ω

∇W · aε(x, t, wε)∇W
)1/2

.

Using the above inequality, we get

AH(tk;V,W ) ≤
∑

K∈TH

|K|
(Λ
λ

)1/2(∫
−

Qk

∇vε · aε(x, t, vε)∇vε
)1/2(∫

−
Qk

∇wε · aε(x, t, wε)∇wε
)1/2

≤
∑

K∈TH

|K|
(Λ
λ

)1/2(∫
−

Qk

∇V · aε(x, t, vε)∇V
)1/2(∫

−
Qk

∇W · aε(x, t, wε)∇W
)1/2

≤ Λ
(Λ
λ

)1/2 ∑

K∈TH

|K| |∇V | |∇W | = Λ
(Λ
λ

)1/2 ∑

K∈TH

(∫

K

|∇V |2
)1/2(∫

K

|∇W |2
)1/2

≤ Λ(Λ/λ)1/2‖∇V ‖0‖∇W‖0.(4.6)

The existence of the solution easily follows from the standard approach in [13] by (4.5)

and (4.6), while the uniqueness is more involved, which together with the error estimate will

be addressed in Theorem 4.3.

The error estimate for Problem 4.1 is essentially the same as the linear case. Define Ũn
H as:

Let Ũ0
H = QHu0, for k = 1, · · · , n, Ũk

H ∈ XH satisfies

(∂Ũk
H , V ) +A(tk; Ũk

H , V ) = (fk, V ) for all V ∈ XH ,

where

A(tk; Ũk
H , V ) =

∑

K∈TH

|K|∇V · A(xK , tk, Ũ
k
H)∇Ũk

H .

For notation simplicity, we associate A with an operator Â as

(Â(x, tk, V )∇V,∇W ) = A(tk;V,W ) for all V,W ∈ XH .

By [7, Theorem 3.1], the effective matrix A satisfies

λI ≤ A ≤ (Λ2/λ)I.
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Moreover, by [7, Proposition 3.5], A(x, t, z) (so does Â) is Lipschitz continuous in z uniformly

with respect to all (x, t) ∈ Q, and the Lipschitz constant is denoted by L. By [26],

(4.7) ‖Ũn
H − U(x, tn)‖0 ≤ C(∆t+H2),

and there exists a constant K1: = C∗(∆t
1/2 +H + ∆t/H) such that

(4.8) ∆t1/2‖∇Ũn
H‖L∞ ≤ K1,

where C∗ depends on U .

Theorem 4.3. Let U and Un
H be solutions of (4.2) and (4.4), respectively. Then, under the

appropriate regularity assumption on U , we have, for small ∆t,

(4.9) ‖Un
H − U(x, tn)‖0 ≤ C

(
H2 + ∆t+ e(HMM)

)
.

Moreover, for M = K1+CH
−1e(HMM) with C a generic constant independent of ε, δ,H, τn, X, Z

and V , if M satisfies

(4.10) L2M2 < λ,

and there exists a constant η(M) with 0 < η(M) < λ/2 such that

(4.11)

∫

D

|Ek(X,V ) − Ek(Z, V )| dx ≤ η(M)‖X − Z‖1‖∇V ‖0

for all X,Z ∈ XH ∩W 1,∞(D) and V ∈ XH satisfying ‖X‖1,∞, ‖Z‖1,∞ ≤ M , then the HMM

solution is locally unique.

Proof. Define En = Un
H − Ũn

H , we have for any V ∈ XH ,

(∂Ek, V ) + (Â(x, tk, U
k
H)∇Ek,∇V ) = (A−AH)(tk;Uk

H , V )

+
(
(Â(x, tk, Ũ

k
H) − Â(x, tk, U

k
H))∇Ũk

H ,∇V
)
.

Taking V = Ek in the above equation and using (4.5), we get

1

2∆t

(
‖Ek‖2

0 − ‖Ek−1‖2
0

)
+ λ‖∇Ek‖2

0 ≤ e(HMM)‖∇Uk
H‖0‖∇Ek‖0 +C‖∇Ũk

H‖L∞‖Ek‖0‖∇Ek‖0.

Using (4.8) and a kickback of ‖∇Ek‖, we get

(4.12)
1

2∆t

(
‖Ek‖2

0 − ‖Ek−1‖2
0

)
+
λ

2
‖∇Ek‖2

0 ≤ (e2(HMM)/λ)‖∇Uk
H‖2

0 + C‖Ek‖2
0.

There exists a constant M1 such that for ∆t < M1, there holds

‖Ek‖2
0 ≤ (1 + C∆t)‖Ek−1‖2

0 + C∆t e2(HMM)‖∇Uk
H‖2

0.

Hence, by recursive application of the above inequality and noting that E0 = 0, we obtain

(4.13) ‖En‖2
0 ≤ Ce2(HMM)∆t

n∑

k=1

(1 + C∆t)n−k‖∇Uk
H‖2

0 ≤ Ce2(HMM)|||UH |||2.

This together with (4.7) gives (4.9).

Let Un
H = X and Un

H = Z be solutions of Problem 4.1 with Un−1
H given, then by substraction,

we get for all V ∈ XH ,

(X − Z, V ) + ∆t AH(tn;X,V ) = ∆t AH(tn;Z, V ),
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which can be rewrite as

(X − Z, V ) + ∆t(Â(x, tn, X)∇(X − Z),∇V ) = ∆t(AH −A)(tn;Z, V ) − ∆t(AH −A)(tn;X,V )

+ ∆t
(
[Â(x, tn, Z) − Â(x, tn, X)]∇Z,∇V

)
.

Taking V = X − Z in the above equation and using (4.11), we get

‖X − Z‖2
0 + λ∆t‖∇(X − Z)‖2

0 ≤ η(M)∆t‖∇(X − Z)‖2
0 + L∆t‖∇Z‖L∞‖X − Z‖0‖∇(X − Z)‖0.

After a kickback of ‖∇(X − Z)‖0, we obtain

‖X − Z‖2
0 + (λ/2)∆t‖∇(X − Z)‖2

0 ≤ η(M)∆t‖∇(X − Z)‖2
0 +

L2
∆t

2λ
‖∇Z‖2

L∞‖X − Z‖2
0.(4.14)

It follows from (4.12) and (4.13) that

∆t‖∇En‖2
0 ≤ C

(
∆t‖En‖2

0 + ‖En−1‖2
0 + ∆te2(HMM)

)
≤ Ce2(HMM).

This together with (4.8) and the inverse inequality give

∆t1/2‖∇Z‖L∞ ≤ K1 + CH−1
∆t1/2‖∇En‖0 ≤ K1 + CH−1e(HMM).

Substituting the above inequality into (4.14), we get

‖X − Z‖2
0 + (λ/2)∆t‖∇(X − Z)‖2

0 ≤ η(M)∆t‖∇(X − Z)‖2
0 + (L2M2/λ)‖X − Z‖2

0

with M = K1 +CH−1e(HMM). Using (4.10) and (4.11), we get X = Z, i.e. the HMM solution

is locally unique. �

Remark 4.4. Conditions (4.10) and (4.11) show that the HMM solution may not be unique

if the estimating data procedure is not accurate enough. This is indeed the case even if the

homogenized solution U is unique. We refer to [3] for related discussion on the approximation of

the quasilinear elliptic problems.

To simplify the presentation, we will show how to estimate e(HMM) when (4.3) is changed

slightly to

(4.15)





∂tv
ε −∇ ·

(
aε

(
x, t, V (xK)

)
∇vε

)
= 0 in Qn,

vε = V on ∂Iδ × Tn,

vε|t=tn
= V,

and AH is changed to

AH(tn;V,W ) =
∑

K∈TH

|K|
∫
−

Qn

∇wε · aε(x, t, V (xK))∇vε.

Estimating e(HMM) with cell problem (4.3) is more involved and we will address it in a forth-

coming paper.

Theorem 4.5. If we assume that aε(x, t, uε) = a(x, x/ε, t, uε) with a(x, y, t, p) periodic in y with

period Y , and the cell problem (4.15) is employed, then

(4.16) e(HMM) ≤ C
(
δ +

(ε
δ

)1/2

+ max
1≤k≤n

(
τk +

ε

τ
1/2
k

))
.

If
(
δ + (ε/δ)1/2 + τn + ε/τ

1/2
n

)
/∆t1/2,

(
δ + (ε/δ)1/2 + τn + ε/τ

1/2
n

)
/H and ∆t/H are sufficiently

small, then (4.10) and (4.11) hold.
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Proof. By the homogenization result in [4] and proceeding along the same line of (1.9), we may

get (4.16). The only modification lies in the fact that AH is not symmetric, therefore, the

identity (3.13) is invalid, which actually accounts for the accuracy loss in (4.16).

To verify the validity of (4.10) and (4.11), we proceed in the same fashion of [17, Theorem

5.5]. Define

K1 = δ +
(ε
δ

)1/2

+ τn +
ε

τ
1/2
n

.

It follows from (4.16) that

L2M2 ≤ 2L2(K2
1 + CH−2K2

1) = 2L2C2
∗(∆t+H2 + (∆t/H)2) + CL2H−2K2

1).

Therefore, there exists ρ0 > 0 and ρ1 > 0 such that if ∆t,H,∆t/H < ρ0 and K1/H < ρ1, we

get (4.10).

Next, proceeding in the same fashion of [17, Lemma 5.9], we may take η(M) = C(1 +

M∆t−1/2)K1. Invoking (4.16) once again, we obtain

η(M) ≤ C(1 +K1∆t
−1/2)K1 + CH−1

∆t−1/2K2
1

≤ C(1 + C∗)K1 + C∗(H/∆t
1/2 + ∆t1/2/H)K1 + CH−1

∆t−1/2K2
1.

Therefore, there exists a constant ρ2 such that if K1/∆t
1/2 < ρ2, we have η(M) < λ/2. Finally,

let ρ = min(ρ1, ρ2), if K1/∆t
1/2,K1/H < ρ and ∆t,H,∆t/H < ρ0, then (4.10) and (4.11) hold

true. �

Remark 4.6. For the case when aε = a(x, x/ε, t, uε), a formal asymptotic expansion shows that

there is no oscillation in the temporal direction and uε plays a role of a parameter in the cell

problem. Taking into account these special features of the problem, we may employ the following

cell problem: For any s ∈ R, let vε
s be solution of

(4.17)

{
−∇ ·

(
a(x, tn, s)∇vε

)
= 0 in Iδ,

vε = V on ∂Iδ,

Define wε
s similarly. For any s ∈ R, we define AH(xK , tn, s) as

∇W · AH(xK , tn, s)∇V =

∫
−

Iδ

∇wε
s · aε(x, tn, s)∇vε

s dx for W,V ∈ XH .

Given AH , we may get the following estimate for e(HMM) as:

e(HMM) ≤ C
(
δ +

ε

δ

)
.

The details will be given elsewhere.

Appendix A. Error estimates for the locally periodic parabolic homogenization

problems

The homogenization procedure for the parabolic problem is by now well-understood, see [5, 6,

29] and the references therein. However, there are very few results concerning the error estimate

for the difference between uε and the homogenization solution U , or the difference between uε

and the first order approximation uε
1 and the second order approximation uε

2 (see (A.2) and (A.6)

for the definitions). In this appendix, we shall prove such error estimates for the locally periodic

parabolic homogenization problem [6, 8].
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As to the locally periodic parabolic homogenization problem, the homogenization matrix A is

given by (3.6). We have the following regularity estimate for the solution of (1.2) (see-[18]):

(A.1)
‖∇U‖L2(Q) + ‖D2U‖L2(Q) ≤ C(‖f‖L2(Q) + ‖u0‖1),

‖∇∂tU‖L2(Q) ≤ C(‖∂tf‖L2(Q) + ‖u0‖2).

Set

(A.2) uε
1: = U + εχ · ∇U.

A direct calculation yields
(
aij

∂uε
1

∂xj

)
(x, x/ε, t) =

(
Aij

∂U

∂xj

)
(x, t) + G(x, x/ε, t)∇U

+ ε
(
aij

∂χk

∂xj

)
(x, x/ε, t)

∂U

∂xk
+ ε(aijχ

k)(x, x/ε, t)
∂2U

∂xk∂xj
,(A.3)

where G = {gj
i }d

i,j=1 is defined as

gj
i (x, y, t): =

(
aij + aik

∂χj

∂yk

)
(x, y, t) −Aij(x, t).

Obviously, ∫

Y

gj
i (x, y, t) dy = 0 and gj

i (x, y, t) is periodic in y.

Notice that ∂yi
gj

i (x, y, t) = 0 for j = 1, · · · , d, therefore, there exists a skew-symmetric matrix

α(x, y, t) = {αk
ij(x, y, t)}d

i,j,k=1 such that

gj
i (x, y, t) =

∂

∂yk
αj

ik(x, y, t),

∫

Y

αj
ik(x, y, t) dy = 0.

Thus, we obtain

gj
i (x, x/ε, t)

∂U

∂xj
= ε

∂

∂xk

(
αj

ik(x, x/ε, t)
∂U

∂xj

)
− εαj

ik(x, x/ε, t)
∂2U

∂xk∂xj

− ε
∂αj

ik

∂xj
(x, x/ε, t)

∂U

∂xj
.(A.4)

Let the corrector θε be the solution of

(A.5)





∂tθ
ε −∇ ·

(
a(x, x/ε, t)∇θε

)
= 0 in Q,

θε = −εχ · ∇U on ∂D × (0, T ),

θε|t=0 = −εχ|t=0 · ∇u0 in D.

Define

(A.6) uε
2: = uε

1 + θε.

We estimate uε − uε
2 in the following theorem.

Theorem A.1. Assume that u0 ∈ H2(D) and f ∈ H1(0, T ;L2(D)), then

sup
0<t≤T

‖(uε − uε
2)(t)‖0 + ‖∇(uε − uε

2)‖L2(Q)

≤ Cε(‖u0‖2 + ‖f‖L2(Q) + ‖∂tf‖L2(Q)).(A.7)
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Proof. For any φ ∈ C(0, T ;L2(D)) ∩ L2(0, T ;H1
0 (D)) with φ(x, 0) = 0, we write the weak form

of (1.2) and (A.5) as
∫

D

(
φ∂sU + ∇φ · A∇U

)
dx =

∫

D

fφdx and

∫

D

(
φ∂sθ

ε + ∇φ · aε∇θε
)
dx = 0.

Invoking (A.3) and the above equations, we obtain
∫

D

φ∂s(u
ε − uε

2) dx+

∫

D

∇φ · aε∇(uε − uε
2) dx

= −ε
∫

D

∂s

(
χ · ∇U

)
φdx−

∫

D

∇φ · G∇U dx− ε

∫

D

∇φ · aε∇(χ · ∇U) dx.(A.8)

In view of (A.4) and the fact that α is a skew-symmetric matrix, we get
∫

D

∇φ · G∇U dx = −ε
∫

D

(
∇φ · α : D2U + ∇φ · (∇ · α)∇U

)
dx.

Substituting the above identity into (A.8), we get
∫

D

∂s(u
ε − uε

2)φdx +

∫

D

∇φ · aε∇(uε − uε
2) dx

= −ε
∫

D

∂s(χ · ∇U)φdx − ε

∫

D

∇φ · aε∇(χ · ∇U) dx

+ ε

∫

D

(
∇φ · α : D2U + ∇φ · (∇ · α)∇U

)
dx.(A.9)

Taking φ = uε − uε
2 in the above identity since (uε − uε

2) ∈ H1
0 (D) and (uε − uε

2)|t=0 = 0,

integrating from 0 to t for any 0 < t ≤ T , we obtain

‖(uε − uε
2)(x, t)‖0 +

( t∫

0

‖∇(uε − uε
2)‖2

0 ds
)1/2

≤ Cε
( t∫

0

(‖∂sU‖2
1 + ‖U‖2

2) ds
)1/2

.

A combination of the above inequality and the regularity estimate (A.1) gives (A.7). �

In what follows, we turn to the estimates for the corrector and the first order approximation

uε
1. No error estimates for the correctors are available to the best of the author’s knowledge.

Theorem A.2. Assume that u0 ∈ H2(D) and f, ∂tf ∈ L2(Q), then

sup
0<t≤T

‖(uε − uε
1)(t)‖0+‖∇(uε − uε

1)‖L2(Q)

≤ C
√
ε(‖u0‖2 + ‖f‖L2(Q) + ‖∂tf‖L2(Q)),(A.10)

and

(A.11) sup
0<t≤T

‖(uε − U)(t)‖0 ≤ C
√
ε(‖u0‖2 + ‖f‖L2(Q) + ‖∂tf‖L2(Q))).

Proof. Define ψε ∈ C∞
0 (D), which equals 1 in D/D2ε and equals 0 in Dε, where

Dε: = { x ∈ D | dist(x, ∂D) ≤ ε }.

Obviously, |∇ψε| ≤ C/ε.
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Define wε: = U + εψε
χ · ∇U , obviously, wε(x, t) ∈ H1

0 (D) for a.e., t ∈ (0, T ]. A direct

calculation gives

sup
0<t≤T

‖(uε
1 − wε)(t)‖L2(D)+‖∇(uε

1 − wε)‖L2(Q)

≤ C
√
ε(‖u0‖1 + ‖∇U‖L2(Q) + ‖∇∂tU‖L2(Q) + ‖D2U‖L2(Q)).(A.12)

It remains to bound uε −wε, as that in the proof of (A.7), we have for any φ ∈ C(0, T ;L2(D))∩
L2(0, T ;H1

0 (D)),
∫

D

∂s(u
ε − wε)φdx+

∫

D

∇φ · aε∇(uε − wε) dx

= −ε
∫

D

∂s(χ · ∇U)φψε dx+ ε

∫

D

∇φ · aε∇(χ · ∇U) dx

− ε

∫

D

∇φ · aε(χ ·D2U)ψε dx−
∫

D

r
ε · ∇φdx,

where r
ε is defined by

r
ε: = ∇U · aε∇yχ(ψε − 1) + ε∇ψε · aε(χ∇U).

The terms except the last one in the right-hand side of of the above expansion can be easily

bounded by Cε(|∂sU |1 + |U |1 + |U |2)‖∇φ‖0.

By virtue of [21, Lemma 2.5], we get

|U |1,D2ε
≤ C

√
ε(|U |1 + |U |2).

We thus bound r
ε as

‖rε‖0 ≤ C|U |1,D2ε
≤ C

√
ε(|U |1 + |U |2).

Therefore, we get
∫

D

∂s(u
ε − wε)φdx +

∫

D

∇φ · aε∇(uε − wε) dx ≤ C
√
ε(|∂sU |1 + |U |1 + |U |2)‖∇φ‖0,

let φ = uε − wε, integrating the above inequality from 0 to t, we obtain

‖(uε − wε)(t)‖2
0 + λ

t∫

0

‖∇(uε − wε)‖2
0 ≤ ‖(uε − wε)(x, 0)‖2

0

+ Cε

t∫

0

(‖∇∂sU‖2
0 + ‖∇U‖2

0 + ‖D2U‖2
0) ds.

Using ‖(uε − wε)(x, 0)‖0 ≤ Cε‖u0‖1, we get

max
0<t≤T

‖(uε − wε)(t)‖0 + ‖∇(uε − wε)‖L2(Q)

≤ C
√
ε(‖u0‖1 + ‖∇∂tU‖L2(Q) + ‖D2U‖L2(Q)).

This inequality together with (A.12) and the regularity estimate (A.1) give the desired esti-

mate (A.10). The estimate (A.11) follows from (A.7) and (A.10). �

If U is smoother, then we may improve (A.11) to O(ε).
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Corollary A.3. If ∇U ∈ L∞(Q), then we have

(A.13) sup
0<t≤T

‖(uε − U)(t)‖0 ≤ Cε(‖u0‖2 + ‖f‖L2(Q) + ‖∂tf‖L2(Q) + ‖∇U‖L∞(Q)).

Proof. By maximum principle [20], we have

(A.14) max
(x,t)∈Q

|θε(x, t)| ≤ Cε max
(x,t)∈Q

|∇U(x, t)|,

which together with (A.7) gives

sup
0<t≤T

‖(uε − U)(t)‖0 ≤ sup
0<t≤T

‖(uε − uε
2)(t)‖0 + ε sup

0<t≤T
‖(χ · ∇U)(t)‖0 + sup

0<t≤T
‖θε(·, t)‖0

≤ Cε(‖u0‖2 + ‖f‖L2(Q) + ‖∂tf‖L2(Q)) + Cε max
0<t≤T

‖∇U(·, t)‖0

+ Cε‖∇U‖L∞(Q)

≤ Cε(‖u0‖2 + ‖f‖L2(Q) + ‖∂tf‖L2(Q) + ‖∇U‖L∞(Q)).

This gives (A.13). �

Notice that (A.14) also holds true for the case when aε = a(x, x/ε, t, t/ε2). Therefore, we may

proceed as that in Lemma 3.3 to obtain the following estimate (A.15) for the corrector. But we

cannot obtain (A.10) since we cannot obtain (A.7) by the method herein.

Corollary A.4. For aε = a(x, x/ε, t, t/ε2) with a(·, y, ·, s) is periodic in y and s respectively with

periods Y and 1, if ∇U ∈ L∞(Q), then we have

(A.15) ‖∇θε‖L2(Q) ≤ C
√
ε(‖u0‖2 + ‖f‖L2(Q) + ‖∂tf‖L2(Q) + ‖∇U‖L∞(Q)).

Remark A.5. In case of one-dimensional problem, the following error estimates are stated in [5,

pp. 43, Theorem 1].

‖∇(uε − uε
2)‖L2(Q) ≤ C(T )ε, ‖∇(uε − uε

1)‖L2(Q) ≤ C(T )ε.

It is not surprising that the error estimate for the first order approximation is O(ε), since there

is no boundary layer for one-dimensional problem.
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