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Abstract

In this paper we investigate Donder-Weyl (DW) Hamilton-Jacobi equations and establish the
connection between DW Hamilton-Jacobi equations and multi-symplectic Hamiltonian systems.
Based on the study of DW Hamilton-Jacobi equations, we present the generating functions for
multi-symplectic partitioned Runge-Kutta (PRK) methods.
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1 Introduction

Hamilton-Jacobi theory was presented and developed by W. Hamilton in the 1820s for problems
in wave optics and geometrical optics. Then the idea was extended to problems in dynamics in
1834, and in 1837 C.G.J. Jacobi applied the method to the general problems of classical variational
calculus. One of most important results on Hamilton-Jacobi theory is Jacobi’s theorem, which
reduces solving Hamiltonian equations to finding a complete integral of first-order partial differential
equations (PDEs), so called Hamilton-Jacobi equations. It is noticed, the solution of Hamilton-
Jacobi equations, function S can be related to any symplectic map ([12]), therefore S gains a
name — generating function. For any symplectic transformation, theoretically, it is possible to
find the function S such that the transformation can be expressed with S. The explicit expression
of generating functions for symplectic Runge-Kutta (RK) methods and symplectic partitioned
Runge-Kutta (PRK) methods have been presented in [7]. However, the generating function is
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not unique. By changing coordinate variables, any symplectic transformation can be generated
by various generating functions. This provides various ways for constructing symplectic numerical
algorithms. Based on Hamilton-Jacobi theory, the symplectic numerical algorithms of higher order
— generating function method is discussed by several authors via computing the approximate
solution of Hamilton-Jacobi equations and taking the truncation of approximate solution. The
systematical development of generating function method is due to [2] and its more applications
are obtained in the numerical computation for source free systems ([14]) and Birkhoffian systems
(13)).

In recent years, researchers have paid much more attentions to geometric integrators for the
system of differential equations. In the study of Hamiltonian PDEs, the presentation of multi-
symplectic Hamiltonian formulation and multi-symplectic structure suggests a new way to compute
Hamiltonian PDEs ([1, 8]). Compared with traditional approach, which regards Hamiltonian PDEs
as the infinite dimensional Hamiltonian systems based on symplectic geometry, the multi-symplectic
geometry theory treats Hamiltonian PDEs as the finite dimensional multi-symplectic Hamiltonian
systems by the use of bundle coordinates. In multi-symplectic geometry theory, the base space
consists of independent spatial variables and tempotal variables, the bundle space consists of de-
pendent functions with fiber coordinates and all the first derivatives of dependent functions form
the 1-jet bundle space. The new geometric integrators are called multi-symplectic numerical algo-
rithms, which preserve the discrete multi-symplectic conservation laws. Under certain conditions
on coefficients, it has been proved, the discretization for Hamiltonian PDEs by using RK methods
and PRK methods both in temporal direction and spatial direction is multi-symplectic ([5, 11]),
and the variational integrators based on discrete variational principles are multi-symplectic ([9]).
For Hamiltonian PDEs, an analogue of Hamilton-Jacobi equations is called Donder-Weyl (DW)
Hamilton-Jacobi equations ([6]). To our knowledge, up to now there have not been any references
which made use of DW Hamilton-Jacobi equations to study multi-symplectic numerical algorithms
and establish generating function theory. The purpose of this paper is to present the generating
functions of multi-symplectic PRK methods by means of the investigation of DW Hamilton-Jacobi
equations.

This paper is organized as follows. In the next section, we recall the Hamilton-Jacobi theory for
Hamiltonian ODEs and study the generating functions of symplectic PRK methods. In the third
section, we introduce and investigate DW Hamilton-Jacobi equations for Hamiltonian PDEs. The
generating functions of multi-symplectic PRK methods for multi-symplectic Hamiltonian systems
are presented in the fourth section. We conclude the paper in section 5.

2 Hamilton-Jacobi theory for Hamiltonian ODEs

In classical variational calculus and analytical mechanics, finding the extremals or integrating
a Hamiltonian equation is reduced to the integration of a first-order partial differential equation,
the so-called Hamilton-Jacobi equation. Despite the fact that the integration of partial differential
equations is usually more difficult than solving ordinary differential equations, Hamilton-Jacobi



theory has been proved to be a powerful tool not only in the study of problems of optics, mechanics
and geometry, but also in the numerical computation. In this section, we give the simple description
of Hamilton-Jacobi equations and recall some results on the generating functions for symplectic
PRK methods. The readers can refer to [3] and references therein for the more details.
Hamilton-Jacobi equation is the following first-order PDE
oS oS
— +H(—,q9) =0 1
5+ H G0 (1)
with function H = H(p1, -+ ,Pn,q1," "+ ,qn). 1ts solution S(t,q) is called generating function.
To calculate the solution of Hamilton-Jacobi equation (1), we differentiate (1) w.r.t ¢ and denote

p= g—g(t, q), then it leads to the following first-order quasi-linear PDE for p

ZIZ + (gZ)THp(p, q) = —Hy(p, q) (2)

with Hy, = (Hy,,--- Hy,)T, Hy = (Hp,,- - , Hp,)T. It is easy to know

dt dq
2= b 7 = (3)

is the characteristic equation of (2). Along the characteristic line, (2) becomes

opdt | Opirdg _ dp

s ag) ds = a5t = ~Halpa) (4)

Combining (3) and (4), we conclude that Hamiltonian system is the characteristic equation of
Hamilton-Jacobi equation. Finding the solution of Hamilton-Jacobi equations is related closely to
solving the Hamiltonian systems.

Since the equivalence between Hamiltonian equations and Euler-Lagrange equations by Legen-
dre transformation p = Ly, the solution S of Hamilton-Jacobi equations is also related to Lagrangian
function L. Using (1), we have

0 = 5+ (G = ~H(G )+ (5= Lia.d )

with Lagrangian function L = p¢ — H (p, q). Taking the integral of (5), we obtain

swm—Ame«mm, (6)

which is the action functional for Lagrangian function L. For the solution ¢(¢) of Euler-Lagrange
equation %Lq = L4 with fixed boundary value ¢(0) = qo, ¢(t) = q1, S is also taken as the function
of qo,q1 denoted by S*

ﬂ@mnzémeamm. (7)



Denote p1 = p(t) = L4(q(t),4(t)), po = p(0) = L4(q(0),¢(0)). Differentiating (7) w.r.t. qi, qo, it is
easy to derive

oS!t oS!t
=Zo—p, = =—pp. 8
dq1 b1 940 Po ( )
And the relation
oSt oS!t
dp1 A dq1 — dpo A dgo = d(pi dq1 — p§ dgo) = d((5— a0 Yldg, + (a—qo)qu ) =d*St =

shows that mapping (qo,po) — (q1,p1) defined by (8) is symplectic. The function S*(qo, q1)
related to the symplectic map is called the generating function of first kind. By the different choice
of independent coordinate variables, this symplectic map can be reconstructed by different relations
(13))-

What follows, we turn our attention to the relation between symplectic PRK methods and

Hamilton-Jacobi equations. Consider the following discrete version of (6)

S (g g A = ALY BL(QE Q) )
presented in [9], where
Qk+1 = qr + Al zs: biQf, (10)
i=1
QF = g+ A ay Q. (1)
j=1

Based on discrete Euler-Lagrange equation

0 = D1S"(qk, qr+1, At) + DaS* (g1, qi, At),

we obtain
- 0QF 1 v OQF oy 0QF Lo 0QF T
0= A3 (et B+ (ST I+ (Gt B+ (T

Qk 1
gy,

S R Qk
= At (=bjaz) (5> Fa LTLE + A Z biai;

,5=1 t,5=1

aQ Q1
Trk—1 k Trk—1
'Lk +Atl§1:b 8%) L+ (—— Jar )y'LEh

with LF = L(Q¥, QF),a;; = b; — %9 In the above equality, relations —I = At Z b, 208 29F _

b; v Oqy > Oqy
s 8Qk o0k—1 lak k—1 B aQk —
I+ At Z a;j aqk 662:11@ = At Zl aijaiék have been applied. Denote a;, = '21 bjaji(afq;)T, b =
J= J=



3 0@ \r 0Qk\T 7 0\ .
= > biaii(—52—)" Gk = bi(5-)" , dik, = bi(=55—)", it follows from the above equality that
j=1

ALY anLo(QF,QF) + At b Lg(QF 1, Q)

i=1 i=1
=D arLq(Q, Q) + 3 dinLqy(Qi Q)
i=1 i=1

s _ s an 1 8Qk s s

with At Z(C_le + bzk) =—-T—At Z biai]( 8% + T4 ) Z Cik = *I/At, Z dip. = I/At, which is
i=1 i,j=1 i=1 i=1

the discrete version of Euler-Lagrange equation.

(9) is related to a symplectic PRK method ([3])

S S
Pra1 =Pk — At Y b PF, P} =p,— AtY a;Pf, (12)
i=1 j=
s . S .
Gei1 = qp + ALY biQF, QF =aqr+ AtY _a;Qb, (13)
i=1 j=1
by the relations
oS! d oSt
Pkt1= 5 —  an Pk =—5—,
T g g Oqx,
where the symplectic conditions b;b; — bja;; — bjaj; =0, 4,5 = 1,--- , s are satisfied.

In fact, with S! in the form of (9), it is easy to know

o 381 Atz bi( aqkﬂ TL’c aa(gl )TLE), (15)
—pp = gi = Ath aci YTLE + (%Cjk )TLE). (16)

From (13), it follows that
O:IAtZs:bi;;fi, O—I+At2b%§: (17)

=1 and —At Z b; 00 _ = I respectively, it reads

Multiplying (15) and (16) by At Z bi i Dar

zaq

0
pk—i—l At2 Z b; Qg4 aqf+ )TL (Q]’Q]

1,=1

(298 )k, o),
Qk+1




aQ

_ 2 k

At§ bi( 8% _—AtE —bjaji)( 8q) ( Q
=1

When b; # 0, which provides

*biai . )
P = Aty SEEL(QF, Q) + Ly(Q7, @),
=1

s bzb — bal . .
P = =AY L Q) QF) + La(QF QD).

=1 :

Substituting (19) into (20) leads to

pr = =AY b Le(QF, QF) + pria,

j=1

Ly(QF, QF) = e + Atz% Q5, Q%)
7=1
. N b i . . . .
with a;; = bj — 228 Let PF = Ly(QF, QF), B} = Lo(QF,QF), H(P},QF) = PFQF -
then

Hy(PF,Qf)=QF,  Hy(PF,Qf)=—Pf.

PRK method (12)-(14) can be reformulated with
S (prs1, v, At) = AthH (P, Q) — A Z Hy (Pf, Qi) Hy(PF, Q5)
=1 1,j=1
by the relations ([3])

0S? 0S?
) Pk+1 — Pk = — (7 —
Opr+41

oqr”
Remark 2.1. The difference between S! and S? is

qk+1 — gk =

Phi1 (@1 — @) — S (Prt1, Qs A) = SH(qr, qs1, At).

Remark 2.2. The generating function

A
Sa(pk+12+pk7%+12+ qijt AthH (P*,QF)+ t Z(bj&ji—biaij)ﬂ TPk QMK
5,5=1

can generate PRK method (12)-(14) with the relations

os? (pk+1 + Dk Q1 + Qk)

Pk4+1 — Pk = _aT, B ) 9
o 3%S3(Pk+1 +Pe Qe1 + e
drk+1 — 4k ap 5 ) 9 .

Ly}

P Q)

L(QE,QP),

(Pk Q])



p’““;p’“,v = q’““;‘““, and differentiating (12) and (13) w.r.t v

Introducing new variables u =

leads to
8(5? (?;ka Atjzlaw (Hop(Pf, Qk)i + Hyg(Pf,QF) Cik) (21)
o9 _ Ju +At;am (PO + (P 0 ), (22)
3};1@;1 B apk Ath (P Qk)ap + Hyy(PF, Qk)an> (23)
e 2 +Ath PR QYO |, (P 228, (24)

Calculating the derivative of S3

gl Atiilbi«ag'fﬁﬂg (i AT idi1<bjaji b (a7

oQk ) , k , k . 4
Gy, i (B a1 Oy a1 )

S0 bb; bidgi — biai opPy : Q% : .
= At2 Z (_TJ + % + blalj)((Tg)T(ng)T + ( avj )T(HIZ(])T)HQ
3,j=1
N bibj  —bjaji+bidi; . . OPF . Q% ; S
AR Y (5T S i) () ()T + (5 5T ()T Hy + Aty biH,
i,j=1 =1

with Hi = Hy(PF,QY), H, = Hyp(PF, Q). Here, (21)-(24) and L (%1 4 9puy — o, 1(%ktr 4 0y

(

1 are used. Under condition b;b; — b;a;; — bja;; = 0,4,5 =1,--- s, it yields
oS3 >
= = At bH,(PF,QM.
O ; (I( 7 >Q7,)
Similarly,
as® 8Pz T ryi OQF 7 i AR - aPJIC T (i \T
== A Zb g )t o VT HL) + S 3 = b ()
8@’“ opPk . oQF

+( 8u) (Hp) ") Hy + (5 5)" (Hy) " + (5 5) " (Hyy) ) H)

= Atzbin(Hk,Qf)-

i=1
Remark 2.3. PRK method (12) -(14) can be expressed by the relations
_ 8%82( ) — 6782( )
Pr+1 — Pk = Bgir Pky Qk+1); dk+1 — 9k = £ Dky Gk+1



with S? in the following formulation

S* (P> Qi 1, A) = AthH PE,QY) + AP Z biaziHy (PF, Q) Hp(Pf, QF).

Z 1 7.] 1
Obviously,
0s? (O g (99 1y 2 ‘o"“ I P I P
%—Atzbz((apk) H, + (ap )" Hy) + At ;lbagz 8pk) (Hj,) +(67k) (Hy,)" ) H,
aPik T (rri \T 3@? T (r7i \TN 1735
+((8pk) (Hgp) +(8pk) (Hy,) ) HY)

= Atz bin(Pikv Qf)a
i=1

0S? > OP} . oQk : i OP¥ . oQk

= At b; N\ LT Y A2 bidi; I N\T(giyT 4 J \T (177 \T
an+1 ’Lz; ((an+1) p (8qk+1) q) Z‘]Z‘:l .70’.7 ((8qkz+1) ( pp) (8Qk+1 pq) )

OPF L o 0QF . ,

=) (Hyp)™ + (5 )" (Hyg)" ) Hj,

anH ) qp) (anJrl ) ( qq) ) p)

= AtY biHy(PF,QF)
i=1

3 DW Hamilton-Jacobi equation

Similar to Hamilton-Jacobi theory in Hamiltonian ODEs, for Hamiltonian PDEs the DW
Hamilton-Jacobi equation plays the important role. In this section, we introduce the equation

and investigate its characteristics.
Consider the following first order PDE

8St le 8St 05*
Z 5 ) =0 (25)
8561 T ou’ Ou
where S? is the function of ¢t and u, S¥ is the function of z; and w, u = (ul,--- u"),z =
(1, ,Tm). It is the DW Hamilton-Jacobi equation and is related to Lagrangian function and
Hamiltonian function with following theorems.
Theorem 3.1. Multi-symplectic Hamiltonian system
uj:H;’ u]%,:Hszh
op;  Opj’ . . (26)
8t]+8;i:_Huj7 1217”'7m7]:17"'7n

is the characteristic equation of DW Hamilton-Jacobi equation (25).



Proof. Differentiating (25) w.r.t u, we have

St & G = 928! oA
— — m—Hsszi =0,k =1,- .o(27
Otouk + ; axiﬁuk uk Z Oukoud 27 Z: JZ oukous aasa e (27)
Let pz = gTS;’pzl = 85 :
(27) can be rewritten as the following first order PDEs for p = (p', p )

. Noticing that p{, depends only on ¢ and u, p ¢ depends only on z; and u,

8pk 8pk opl, oy’
Z +Hk+z p]aujJrZZ oo pur = 0 (28)
1=1 j5=1
ka 6pk
7 ':17"') )k:]-a"') 29
iUz' Z 6% 7 m n (29)
with pt = (pt,--- ,p))T, p® = (p}* -+ ,p%t, -+ ,p{™, -+, p&)T. The characteristic equation of first
order PDEs (28) and (29)
('71 + Z H "73 )Inxn (’Y(l) + Z H wl’)/g )Inxn tee (P)/ém) + Zl Hp]w.7’L7§j))In><n
J=1 Jj=1 j=
Vél)Ian (’71 + Z ’Y ) nxn O
i#1
det =0
m)Ian O (’71 + Z 72 ) nxn
i#m
is a homogenenous polynomial of degree n(m + 1) in variables 71,75),75)]), = 1,---,m,j =
L,n (0,1,--+,=1/Hei,---) and (1,0,--+, =1/Hpe,-+), i = 1,--- ,m, j = 1,--+ ,n are its
J
solutions. ’
Along the characteristic lines
du? dt du? dz;
Hpt 1 9 H ; 1 ) 1 ) 7m7] ) 7n’ ( )
j p;
(28) gives us
apk (9pk, AR ap,;
uk+ Z Ztaj ZZ xzau‘j:O.
It implies that
m
Dyl (t,u(zx, t)) + Z Dy.ppi(zisu(z,t)) = —Hy(u,p',p%), k= 1,--+ | n, (31)

i=1

apt + Z dui Op},

where Dy denotes the total derivative, Dypl (¢, u(x,t)) = 5k Si 5ur - Regarding pé and p;” as

the function of z,¢, multi-symplectic Hamiltonian system (26) is the combination of (30) and (31).
The proof is finished. ]



Theorem 3.2. DW Hamilton-Jacobi equation (25) is equivalent to the action functional of La-
grangian function L by transformations

. 0st . osm
B=gw P u

i=1,,mj=1,--,n. (32)

Proof. Integrating DW Hamilton-Jacobi equation (25) over region Q € R™"1, we derive

t x
/H 05 as)ddt

8

Under transformations (32), we obtain

/ DtStda;dt—i—Z / D,, S dxdt =

m

o' | 95" S
ot T (Ga) t+z 1 Zzaa dwdt
(

& S% , St 0S*
J
51 gz H(u,— 50 Bu ——))dxdt

ZZ H(u,p',p*))dxdt

U, U, Uy )dxdt

|G+
- [
o
:/QL

with L(u, ug, ug) = p ut—i- Z Z p le H(u,p',p*), Dy, Dy,,i=1,--- ,m being the total deriva-
i=1j=
tives. This implies that

(=™ St(t, u) d:L‘—i—Z ) 1/ S%i(x, u)dz;dt = / L(u,u, uy)dxdt,
o0 o0 Q

where 0f) is the boundary of 2, dx = dzy - - - dxy,, df; = dxy -+ dri—1dxipr - - drm,i = 1,2+ m.

This completes the proof. ]

Based on Euler-Lagrange equations, the general principle relating variational symmetry groups
to conservations laws is first revealed by Noether Theorem in very general form ([8, 10]). For the
study of conservation laws in Hamiltonian systems, it is valuable to notice the role played by the
Hamilton-Jacobi equations. For convenience, we provide the definitions of conservation laws and
generalized vector fields ([10]) as follows.

Definition 3.3. For a system of differential equations A(t, z, ;" (u)) = 0, if

m
DiF'+) Dy E" =0
i=1
vanishes for all solutions of the given system, then it is called a conservation law of the system.
ou™ 9" ul (9”u”) It

) Oz ? > Oz} » Oxl

Here, Dy, D, are the total derivatives, j"(u) = (ul, - u™, g%i, e
E" are the functions of t,z,j"(u), ¢ = 0,--- ,m.

10



Definition 3.4. A generalized vector field is expressed formally in the form

a 0 < )
V = 5(t5$7u7ut7uazv" 375 +¥Th t Ty U, Uty Ugy * * )8713 +;@j(t7xvuvutaula" )@
Definition 3.5. A generalized vector field V is a generalized infinitesimal symmetry of a system

of n-order differential equations

Alu] = A(t, z, 5" (u))

if and only if
j(V)(A) =0

for every smooth function u(t, x).
In the above definition, j(V') denotes the infinite prolongation of vector field V', and is calculated
by the prolongation formula

n

V)=V 43> (Dalps - &uf - Z”ﬁ“j +5“Jt+zm R aaf
J

7=1 =1

. . . J
with uj, = §& 0, = Qe J— i jpk>1and Dy = Dj, -+~ Dy, is the J-th total derivative.

Ooxy "’

The relation between conservation laws of multi-symplectic Hamiltonian systems and general-
ized symmetries of DW Hamilton-Jacobi equations is revealed in the following theorem.

Theorem 3.6. V = Al(t,z, u, %5; )ast + Z A*i(t, x, u, %S:)% is a generalized symmetry of DW

Hamilton-Jacobi equation (25) if and only zf

m
DA+ Dy, AT =0
=1

is a conservation law of multi-symplectic Hamiltonian system (25).

m
Proof Let V = Al agt +) A%y Sazz. is the generalized symmetry of DW Hamilton-Jacobi system
i=1

Alu,

oSt 05 0S5t 8S$ OSt Z@S“ aSt @)
ot dx Ou’ - Oz; "ou’ Ou’’

then according to Definition 3.5, we have

0=j(V)(A) =" (V)(A) = DA" + Z Dy, A" + Z Dt 2 w + Z Z Dy A o aaszl

=1 j=1 8u3 =1 j=1 ouJ

11



with j1(V) = V 4+ D,A* -2 + Z DA + Z D,, A% asz + Z Z D, A% -2 and total
%t dt 7=1 6auj =1 9 i=1j=1 %7 oud

o : t t . .
derivative D;A! = BA + Z ;;ét gujsat From the above equahty, we derive

oul

8At ZaAt o0H Z At 9%t "L 928t oH

ow 975+ 22 505 Guigy T 2 uiws 9ot
b - b (33)
AT IS m 0AT OH =~ = 0AT 9287 IS 928" OH
Z Y Y A Y o)
90S%i 25”1 kHp. k 05%i
i=1 j=1 0wl 9 Aud il=1k=1 8W Ou" O j=1 Qurou! 8W
Denote p}' = %i? , P = giz' For the solution u of (26), it follows from (33) that
8At Z@A OH Z At apj Z op’ )
oud 8p out u)
8A i 8A oOH i OA% Bp " Op (34)
k k
- ) =0.
Z ZZ 8u_] ap;?z +le:1kzl apxl a 7 xz)
; ¢ _ P o i 8pk py!
Using Dypl = 5 + > 5.4up and Dy,pp! = + Z s ul,, (34) gives us that
i=1
DiA" + " Dy, A =0 (35)

=1

holds for any solution of (26) with two functions A'(¢,z,u(t,z),p!(t,x)) and A% (t,z;,u(t,z),
p®(t,z)). On the other hand, if (35) is a conservation law of (26), then (33) holds, which pro-
vides that V' is the generalized symmetry of DW Hamilton-Jacobi equation (25).

4 Generating functions for multi-symplectic PRK methods

In this section, we present the generating functions for multi-symplectic PRK methods based
on DW Hamilton-Jacobi equations.

For numerical discretization, we make use of an uniform meshgrid on the plane of (x,t) with
temporal step At and spatial step Az. Denote u! = u(c;Az,0),ult =~ u(0,G,At),

Uim
w(G Az, EnAt), OiU; m = (AT, EmAt), 0pUsm = ugp(ciAz, 6 At), ¢; = Y ajj and &, = E Qm
i=1 n=1

12



Applying PRK method ([4, 5]) to (26) both in time direction and space direction, we derive

()i = (0")7 = At Y BudiPi s

m=1
S
u —ug' = Az E bi0xUi m,

i=1

(") = (0")5" = Az Y BiOo Pl
i=1

OUim = Hyt (U m, P}

i,m>

Bim),

P}, + 0. P = —Hy(Uim, P

r
Ui,m - ’U,? = At Z dmnatUi,na

Theorem 4.1. Suppose the coefficients of PRK method (36)-(41) satisfy

biAij + Bjaj,; — biBj =0,
Bmlemn + Bn&nm - Em-én = 07

Then its generating functions are

s Wiy Yy

SHAL uf,ud) = At > B (L(Usm, 0:Uim, 0aUim) —
m=1

S
Sy(Az,ul, ug’) = Az > Bi(L(Usm, OiUim, 0aUim) —
i=1

with relations

oS}
8u8 = _(pt)?)

7'7.7:17

(36)
n=1
Flp = 0] = ALY Aundi Pl (37)
n=1
s
Ui,m — ugl = Ax Z aijaxUj,m, (38)
7j=1
Pl = 0")5 = Da ) AyduPl,,  (39)
7j=1
8mUi,m = sz (Uim% Pzt,mv sz,cm)? (40)
2,m Pz:,vm) (41)
(42)
(43)
787m7n:17"'ar' (44>
85" 85" .
87(3317 Uz,m) - (%(wu Uz,m)) 8$Uz,m)7
(45)
oSt oSt .
E(tma Ul,m) - (%(tma U’L,m)) az‘,U'L',m)
(46)
9S; _ 1
2t 47
out =)} (47)
oS!
T _ (yT\TM 4
e = 7 (48)

Proof. Consider conditional extremum problem: finding the value 0;U; ;,, which minimizes S} with

r roo_
Uim — ud = At Y @mniU; , under constraint ul = u) + At Y by 0uUs .

n=1

13
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Let Sf =S} + AMuf —u? — Z

m), we derive

Lu : ut :
90U n Z: aat ) bt G e Gan,) aeau
oU. im TaQsm _
(88tUm) 52 0xUim) — AtAb, =0,
oS} "\~ OUim.p 0?5 00U 00:Ui n 0S*
LAY Bu((G (L, — )T L (L, — o
oud — (( oud ) auax)+( oul ) + oul ) L 8u)
- ( au? ) 3u2 axUz,m),
oS} "\~ OUim 0%8* 00 Us.m 00, Uiy 7 oS*
Pt A B((5Em) (L, — LAY N (L, — 22
gul =1 2 Bl P = ) T (T ) b () (e = )
- ( au% ) (9u2 8IUZ,m)
(36) provides us
oU;
Lm o _ Atd
90,Us. tamn,
aU'Lm . ~ 66tl’]ﬁn 8Uzm : 8615 i,n
5 =1+ At mn"Ffh g —=A mn_ 5 1
- aathzm S aat i,m
0=1-At b, —, 0=1+At b, —.
mz:; oul + mz:; ou
Substituting (52) and (54) into (49), we obtain
88tU 028%  928* 88,5U'
—\ =At? Bmmn Ln w— oo = =5-0:Uim znTu
mzn:l ) ( drdu  Ou? OaUi +At;B ou ) Luss
~ _00U; 028*  928* "\~ 00,U;
)\:At2 By i,n\T a2 2 U a InANT "
mzn; (5,0 L = 5og0 ~ a2 Ui HN;B( gul ) T
With (53),(55) and (56) it follows from (50) and (51) that
oS} 825‘” 025*
= At B L Uiim -
8u Z Fuz 0V 8x6u)
oS}

dul =

(49)

(50)



where the relation Ly, (U;m, OUi m, 02U m) = %Sm (2, Uim) is used. By (47), (57) and (58), we
obtain

- 05* 9%5* -
£\ 1 t\0 t
= (")) =AY Bu(Lu — 5 50:Uim — 5->—) = At Y B, P} 59
(p )z (p )z — ( Ou2 ) 6.’15(9’11,) — ttim ( )
with 0, P},, = Lu — %5 0:Usm — 5. Denote Py, = Lu,(Usm, Ui, 0:Usm), from (49) and

(57), we obtain

881 " ~ : Bm&mn Bn
—(pt)? _ aiug — At Z Bmatpzt,m — At Z [~) 8tpzt,m - TLut

m=1 n n

r ~ - ~

~ Bm mn Bn
— ALY (B - ; JOPLyy = =" Lu, (60)

m=1 n n

=At > ApmdiP,, - PL,

m=1
with b,, = B,, and —A,,, = B’ﬂamgﬁ. Combining (59) and (60), (37) is obtained. Similarly,
consider the conditional extremum problem for the x direction: finding the value 9,U;,, which

S
minimizes S! with Uim —uy' = Az Y a;j0,Uj , under constraint uf* = ug* + Az Y b;0,U; 1. Let

j=1 i=1
S =SL + p(ul® —ult — Az i bi0,Ui ), we gain
=1
oS! 90, U; oU; 928
€T — A B ’Lm TLu T ,m TLu o ,m T
90,U;m xz aa Un) Lot oo, b~ a0, Gt
an,m 028t B
- (8amU‘]’m) 6U2 atUz,m) - Ax,ub] — 0, (61)
oS! u oU; 928t 925t 20,U; a8t 90, U;
JJZA B: ,m\T - — = = i m ,m\T v — — :L‘z,mTu
ur x; (g Lo~ gy ~ guz #Vim) + (=) (L = 500 + (T ™) L)
(62)
Sk 8U 928t 928t 90,U; oSt 90U
—A B zm L_i_i . Z,?’TLT o .',E’L,mT )
ou xz Y 0tou  Ou? %Uim) + ( oul ) L Ou )+ oul ) Lus)
(63)
(38) and (61)-(63) imply that
yy 928t -
auo = Ax ZB 8Ui,m—m>—ﬂ—_(p )0 (64)
S} om
gup 1 ()" (65)
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2 gt 2 gt
Let 0, P%, = Ly — $5-0,U;m — 55-, P?, = Ly,. Then

o a?st a?st
)" — (p*)n _A:UZB 7 OUim — 55-) AxZB@

The combination of (61) and (64) leads to

s
Biam B; bj

> ——L——20,P, =) - L

g bj (p )O Ug )

ZAﬂa PL, + (0)5 = Pr.-

And

8tpit,m + aﬂﬁpfm = (UZ ms F)ztrm Pzg,ﬁm)
with H(Uz ms Pztfm me) - (Pzt,m)TatUz,m‘i‘(F)z%m)TaxUz,m_L(Uz,m; 8tUi,m,8:cUi,m>7 _Aji - Biaijbj_-bjBi
b; = B;. The proof is finished. ]

Theorem 4.2. Under the conditions of above theorem, (36)-(41) is obtained by generating functions

t
SZ(AL, (p)}, ud) = A2 Z bndnm (0:PL ) OuUsm, Ath aS m> Uim),s (66)
m,n=1
S2(Az, (p*)1, ull) = Az? Z b;a;i(0p Py )" 00Usm — Abei@(azi Uim) (67)
T ’ ’ ] ] J ’ — aw ) ;
with relations
aS% o ’U,l _ uO 88326 _ um . um
ol opyy Y
88? _ (00 t\1 88926 (T \M T\m
o0 = @~ 6] g = 0~ 0
Proof. 1t follows from (37) that
8 zm
~ A ZAmn " At Z o, (63)
8Pt " 6 P, Zm

OP, zn
a(p ZAmn - Z mTa/ \0
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By (53), (68) and (69), we gain

882 = A2 mglb i (( %tp’”)TatUz-,m + (%)T&R{Q — At :Bm(ag; ;m)ng;i
= At Z b 8U“” Oy Pl — %S';at Uim) + At? mznjlbnanm (8%1?”)% iom
(885u§’m>Tata%n>
_ A Z bmdi L, — A2 mz; Bmamn(a‘?i;v”)%g{m + AR mz;l Bmamn(a%tgg’” JTo.PL,
ALY G — b+ B} (20,0,
m=1 v
= At zr: b Pl
m=1

X 2 ot 2 ot . OU; m 2 ot ort
with 8tP£ gtgu (tm, Uim)+ %SQ (tms Uim)OtUim. In the above equality, (=53 )T%fQ = (55 )

and the conditions of multi-symplecticity (43), (44) are utilized. Similarly,

oy =8 32 b G G 0t - 0SS
= _Atéém(ggt;ﬁ(atﬂim - %S; OUim) + At? mzn:lbnanm %?;t;zn)%t i m
GETaP,)
= At ZT: bmOeUi m,
m=1
where we make use of equalities g(Uit)l = At Z Amn aaa(tU;" (ggj;;:{ )T%Qué;t = (ggfg’)”i{)T and (69).

The another half of this theorem can be proved in the same way as above. This completes the
proof. O

Consider wave equation in multi-symplectic Hamiltonian formulation

U = v, Uy = W,

v —w, = =V (u).
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The multi-symplectic PRK method for wave equation is

ul —ud = At Z Z)mVim, Uijm — u) = At Z mn Vi, (70)
m=1 =
Uil — U? = At Z Bmﬁt%m, Vi,m - U? = Atz Amnat‘/i,nv (71)
m=1 n=1
u =l = A bW, Uiin —ug' = Az Y agjWim, (72)
i=1 J=1

wi —wi' = Ax Y Bi(V'(Uim) + 0Vim), Wim —wi' = Az Y Aij(V/(Ujm) + 0:Vim).  (73)
i=1 j=1

Substituting (71) and (73) into (70) and (72), it is reduced to multi-symplectic Runge-Kutta-
Nystrom (RKN) method ([5])

ul —ul = At + A B0 Vig,  ul —ugt = Azwg + Az? Y Bi(V/(Ujm) + Vi), (T4)

n=1 J=1

wi' —wi' = Ax Y Bi(V'(Uim) + 0Vim), Ui — ) = Atemv) + AP ampiVig,  (75)
=1 k=1

Uim — ul' = Azc;wf + Ax? Z i (V' (Ukm) + 0Vim)s vp —v) = At Z Bn0iVim, (76)
k=1 m=1

T - -~ T - ~ S S
where Gmip = Y GmnAnk, Bn = D bnAmn, B = > biAij, ai = Y aijAji. Applying theorem
n=1 m=1 i=1 j=1
5.4, the generating function for (70)-(73) is

S7(At, v} ud) = At? Z brtinm (3:Vin) Vim Ath Uim),

m,n=1

mom - 0S5”
S?C(AQS‘, wy -, Y ) = AZL‘2 ijZ:1 bjaﬁ(asz,m)TWi,m — Ax Z bz%(l‘l, Ui,m),

thus the generating function for (74)-(76) is

t
SZ(At, v}, u?) tQancn (8 Vi) T + A3 Z by GO Vi g — Atz b 85 ~(tm, Usm),

n,k=1

m m m : 8Sx
SE(Az, w, ult) = Az? ]z::I bici(0:Wjm) Wl + Ax? j%::l bjcjk (V! (U m) + OViem) — Az ; bi%(xi, Uim)

with the coefficients satlsfylng Bi = Bi(1 —¢), Bm (1 — Cm), 3iBj — Bjayi = BjB; — Biayj,
ﬂmB - Bnanm = ﬁn m Bmamn



5 Conclusions

The multi-symplectic PRK method is important in numerical computing multi-symplectic
Hamiltonian systems. In this paper, we present its generating functions based on DW Hamilton-
Jacobi theory and provide the generating functions for multi-symplectic RKN methods for wave
equations. For Hamiltonian PDEs, DW Hamilton-Jacobi equation is the generalization of Hamilton-
Jacobi equation in the case of Hamiltonian ODEs. It plays the main role in the relation between
generating functions and multi-symplectic PRK methods. The more applications of DW Hamilton-
Jacobi equations to the numerical computation in Hamiltonian PDEs will be in our future work.
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