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Abstract

In the first part of this companion volumes, we present a new flexible alignment model and
an iterative algorithm based on an L2-gradient flow. In this second part of the companion
volumes, we focus on the theoretical analysis of our flexible alignment model presented in the
first part. Three theoretical results are established. We first show that the correspondence
of two images in the alignment model is an injective and surjective map under appropriate
conditions. Secondly, we prove that the solution of the alignment model exists. Finally, we
obtain the results on the existence and uniqueness of the solution for the ordinary differential
equation derived from the finite element discretization of our flexible alignment model.

Key words: Flexible alignment, L2-gradient flow, Bi-cubic B-spline, Existence and unique-
ness, System of ordinary differential equations.

1 Introduction

Image alignment (or registration) is a fundamental task in image processing. It refers to es-
tablishing a geometric correspondence between two similar images. There are many situations
where similar images are generated. One common example is that the similar images come from
the same scene but taken at different sensors, or different time or different viewpoints. Another
well-known example is that the similar images come from different cross sections of biological
tissues [2, 24]. In the past few decades, with the rapid development of image acquisition devices
and diversity of obtained images, image alignment has been used in many fields such as medical
diagnoses, satellite remote sensing, weather forecast and computer vision [2, 28], and various
techniques have been proposed to the alignment problem [8, 9, 10, 11, 14, 15, 25]. Once the
correspondence between images is established, these images can be interpolated or compared for
further study.

∗Project supported in part by NSFC under the grant 60773165, NSFC key project under the grant 10990013
and Funds for Creative Research Groups of China (grant No. 11021101).
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Basically, the image alignment methods can be classified into two categories: rigid alignment
and flexible alignment. The goal of rigid alignment is to find a few parameters such as rotation
angle, scale parameter and translation components. Many rigid alignment methods have been
proposed. These methods include intensity-matching based (see [13, 17, 21, 23]) and feature-
matching based (see [6, 16]) techniques. Comparing with rigid alignment, flexible alignment in
general is more difficulty. The aim of flexible alignment is to find a correspondence between
two images with certain similarities. Several flexible alignment approaches have been proposed.
Some of them are intensity-based elastic registration which was first proposed by Bajcsy and
Kovacic [1, 4]. Some others include boundary mapping [5], identification of landmarks [19] and
modal matching [20, 22].

The aim of this paper is to establish three theoretical results for our alignment model pre-
sented in the first part of the companion volumes [27]. In the first part, we present a new flexible
alignment model and an iterative algorithm based on an L2-gradient flow. The experiment re-
sults show that the proposed method is efficient, effective, robust and capable of capturing the
variation of the initial and target images, from large to small scale. But the theoretical analysis
has not been conducted. As far as we know, there are little literatures considering the existence
and uniqueness about the flexible alignment problem. Many used algorithms were heuristic in
nature: no proof was given of their correctness, and no attempt was made at the hypotheses
under which they would work or not. We analyze in this paper our flexible alignment model
from a theoretical point of view. Under appropriate conditions on the deformation x(u, v) we
show that it is a one to one mapping and surjection. Based on the well-defined functional space,
the solution of the energy model is studied. Furthermore, we prove the existence and uniqueness
of the numerical solution.

The remaining of the paper is organized as follows. In section 2, we review our algorithm and
list the theoretical results. In section 3, we give proof details of the regularity of the mapping
x(u, v). Basing on the analysis results of section 3, we consider in section 4 the existence
problem of the minimizer of the alignment model. An example is also presented to show that the
minimizer may not be unique. In section 5, we discuss the existence and uniqueness problems
of the solution for the ordinary differential equation system deduced from the finite element
discretization. We conclude the paper in section 6.

2 Algorithm review and theoretical results

In this section we first review our alignment model and algorithm, and then summarize the main
results of this paper.

2.1 L2-gradient flows and theoretical results

Given two same size images I0(u, v) (target image) and I1(u, v) (initial image) defined on [0, 1]2 ⊂
R2 with certain similarities. Suppose the size of the images is (m + 1) × (n + 1). We want to
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find a smooth mapping

x(u, v) : [0, 1]2 → [0, 1]2,

satisfying
(i) x is a C2 mapping;
(ii) x(0, v) = [0, v]T , x(1, v) = [1, v]T , x(u, 0) = [u, 0]T and x(u, 1) = [u, 1]T ;
(iii) For a given 0 < γ < 1, det(xu,xv) ≥ γ;

such that

E (x) =

∫ 1

0

∫ 1

0
(I1(x)− I0)

2dudv + ε

∫ 1

0

∫ 1

0
(g(x)− 1)2dudv (2.1)

is minimized, where g(x) = g11g22 − g212 with g11 = (xu)
Txu, g12 = (xu)

Txv and g22 = (xv)
Txv.

In this paper, we choose x(u, v) as a vector-valued bivariate bicubic B-spline function defined
on [0, 1]2.
Assumption. Images are traditionally defined only on the integer grid. Here we assume I0(u, v)
and I1(u, v) are defined as two continuous functions by assuming a bilinear interpolation is
enforced in each of the pixels using the density values at the grid points.

To state the result, we need the following notation.

X =
{
x(u, v) : x(u, v) = [x1(u, v), x2(u, v)]

T

=
m+2∑
i=0

n+2∑
j=0

aijNi,3(u)Nj,3(v) satisfying (i)− (iii)
}
.

We define the norm x ∈ X as:

∥x∥X =

(∫ 1

0

∫ 1

0
|x|2dudv

) 1
2

=

(∫ 1

0

∫ 1

0
(x21 + x22)dudv

) 1
2

.

Then we have (see section 3-4)

Theorem 2.1 x : [0, 1]2 → [0, 1]2 satisfying (i)-(iii) is an injection and surjection.

Theorem 2.2 There exists a mapping x0(u, v) ∈ X such that (2.1) is minimized.

Remark 2.1 The uniqueness of x0(u, v) that minimizes (2.1) is not guaranteed. To illustrate

this, we present an example. Suppose x(u, v) =
2∑

i=0

2∑
j=0

xijB
2
i (u)B

2
j (v) is a bi-quadratic Bézier

patch, with x00 = [0, 0]T, x01 = [0,
1

2
]T, x02 = [0, 1]T, x10 = [

1

2
, 0]T, x12 = [

1

2
, 1]T, x20 = [1, 0]T,

x21 = [1,
1

2
]T, x22 = [1, 1]T, x11 is a free parameter. The given initial image I1 is shown in Fig

2.1 (a). The initial image I1 is symmetrical. Assuming x11 = [u11, v11]
T such that x(u, v) is the
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(a) (b) (c) (d)

Fig 2.1: (a) is the initial image I1. (b) is the image I ′0. (c) is the image I ′′0 . (d) is the target image I0.

minimization solution that makes the disk of I1 move toward the disk of I ′0 (see Fig 2.1 (b)).
Thus we conclude that x(u, v) is the solution minimizing (2.1), because

E (x) =

∫ 1

0

∫ 1

0
(I1(x)− I0)

2dudv + ε

∫ 1

0

∫ 1

0
(g(x)− 1)2dudv

=

∫ 1

0

∫ 1

0
(I1(x)− I ′0 + I ′0 − I0)

2dudv + ε

∫ 1

0

∫ 1

0
(g(x)− 1)2dudv

=

∫ 1

0

∫ 1

0
(I1(x)− I ′0)

2dudv +

∫ 1

0

∫ 1

0
(I ′0 − I0)

2dudv + ε

∫ 1

0

∫ 1

0
(g(x)− 1)2dudv.

(2.2)

Let x̃11 = [1−u11, v11]
T, then the mapping x̃ =

2∑
i,j=0

(i,j)̸=(1,1)

xijB
2
i (u)B

2
j (v)+ x̃11B

2
1(u)B

2
1(v) makes

the disk of I1 move toward the disk of I ′′0 (see Fig. 2.1 (c)). Similarly, we deduce that x̃(u, v)
is the solution minimizing (2.1). It is obvious that x(u, v) ̸= x̃(u, v). Thus we conclude that
x(u, v) and x̃(u, v) are two solutions minimizing (2.1).

Now we construct an L2-gradient flow to minimize the energy functional E (x). Let

x(u, v, ε) = x+ εΦ(u, v), Φ ∈ C1
0 ([0, 1]

2)2.

Then we have

δ(E (x),Φ) =
d

dε
E (x(·, ε))

∣∣∣
ε=0

= 2

∫ 1

0

∫ 1

0

(
(I1(x)− I0)(∇xI1)

TΦ
)
dudv

+2ε

∫ 1

0

∫ 1

0
(ΦT

uα+ΦT
v β)dudv, (2.3)

where

α = 2(g(x)− 1)(g22xu − g12xv), β = 2(g(x)− 1)(g11xv − g12xu).

Let D1 =
∂
∂u , D2 =

∂
∂v . To construct an L2-gradient flow moving x in the tangent Dlx direction

(l = 1, 2), we take

Φ = (Dlx)(Dlx)
Tϕ, ϕ ∈ C1

0 ([0, 1]
2), l = 1, 2. (2.4)
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Therefore, we obtain the following weak-form L2-gradient flow moving x in the Dlx direction,∫ 1

0

∫ 1

0

∂x

∂t
ϕdudv = −2

∫ 1

0

∫ 1

0

(
(I1(x)− I0)(Dlx)

T(∇xI1)(Dlx)ϕ
)
dudv

−2ε

∫ 1

0

∫ 1

0
(ΦT

uα+ΦT
v β)dudv, l = 1, 2,

(2.5)

where t is a time parameter introduced in x.

2.2 Numerical solutions and theoretical results

To minimize E (x), we solve (2.5) interchangeably using finite element method in the spatial
discretization and explicit Euler scheme in the temporal discretization. Let

x(u, v) =

n0∑
j=0

xjϕj(u, v) +

n1∑
j=n0+1

xjϕj(u, v) (2.6)

be the cubic B-spline representation of x(u, v), where ϕj is the tensor product form B-spline
basis function, x0, · · · ,xn0 are unknown control points, n1 is the number of all the control points.

According to the specific feature of the given images, we can set three types of boundary
conditions: the first one is that four boundaries are fixed; the second case is that two vertical
boundaries are fixed; the third is that two horizontal boundaries are fixed.
Substituting x(u, v) into (2.5), and taking the test function ϕ as ϕi, for i = 0, · · · , n0, we can
discretize (2.5) as a set of nonlinear systems of ordinary differential equations (ODE) with the
internal control points xj , j = 0, · · · , n0, as unknowns.

n0∑
j=0

mij
dxj(t)

dt
= −q

(l)
i , i = 0, · · · , n0, (2.7)

for l = 1, 2, where

mij =

∫ 1

0

∫ 1

0
ϕiϕjI2dudv,

q
(l)
i = 2ε

∫ 1

0

∫ 1

0
(ΦT

uα+ΦT
v β)dudv

+2

∫ 1

0

∫ 1

0

(
(I1(x)− I0)(Dlx)

T(∇xI1)(Dlx)ϕi

)
dudv.

For equation (2.7), the following result can be proved (see section 5).

Theorem 2.3 For δ > 0 given by (5.6), there exists a unique solution of the problem (2.7) for
a given initial map I on 0 ≤ t ≤ δ.
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For the temporal direction discretization of these ODE systems, we use a forward Euler
scheme

dxj(t)

dt
≈

x
(s)
j − x

(s−1)
j

τ
, (2.8)

where τ is a temporal step-size. Solving the linear system using the inverse of the matrix [mij ]

for l = 1, 2, we obtain
dxj(t)
dt and then the new inner control points of x from (2.8).

3 Regularity analysis of mapping x

In this section, we first introduce the used definitions, terminologies and theorems. Then we
provide the details of proof for Theorem 2.1.

3.1 The used definitions and theorems

First, we introduce the used definitions and theorems in this section.

Definition 3.1 [18] Let X and Y be topological spaces; let f :X → Y be a bijection. If both
the function f and the inverse function f−1:Y → X are continuous, then f is called a home-
morphism. f is a local homeomorphism, if for every point x in X, there exists an open set U
containing x, such that f(U) is open in Y and is a homeomorphism.

Definition 3.2 [7] Let B̃ and B be subsets of R2. We say that π : B̃ → B is a covering map if
1. π is continuous and π(B̃) = B.
2. Each point p ∈ B has a neighborhood U in B (to be called a distinguished neighborhood

of p) such that

π−1(U) =
∪
α

Vα,

where the Vα’s are pairwise disjoint open sets such that the restriction of π to Vα is a homeo-
morphism of Vα onto U .

Definition 3.3 [26] Assuming that (X, ρ) is a metric space, A is a subspace of X. If every
sequence in A has a convergence subsequence and the limit point of the convergence subsequence
lies in A, we named that A is a self-sequentially compact set.

Definition 3.4 [7] A ⊂ Rn is arcwise connected if, given two points p, q ∈ A, there exists an
arc in A joining p to q.

Definition 3.5 [7] A ⊂ Rn is connected when it is not possible to write A = U1 ∪U2, where U1

and U2 are nonempty open sets in A and U1 ∩ U2 = ∅.
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Theorem 3.1 [3] Let T be of class C1 in a set D with J(p) ̸= 0 for each p ∈ D, and let T
map D one-to-one onto a set T (D). Then, the inverse T−1 of T is of class C1 on T (D) and
the differential of T−1 is (dT )−1, the inverse of the differential of T . J(p) denotes the Jacobian
determinant of T in the point p.

Theorem 3.2 [7] Let π : B̃ → B be a local homeomorphism, B̃ compact and B connected.
Then π is a covering map.

Theorem 3.3 [7] Let π : B̃ → B be a covering map, B̃ arcwise connected, and B simply
connected. Then π is a homeomorphism.

3.2 Theoretical analysis of mapping x

Now, we prove the correspondence x(u, v) is an injection and surjection.

Remark 3.1 [0, 1]2 is regarded as a topological space, i.e. [0, 1]2 is a clopen set.

Lemma 3.1 x : [0, 1]2 → [0, 1]2 satisfying (i)-(iii) is a locally one to one mapping.

Proof. The idea of the proof is borrowed from [3] . Let a point p ∈ [0, 1]2 , we determine a
neighborhood B of p in which x is one to one. Let p′ and p′′ be two points near p such that
the line segment jointing p′ and p′′ lies in [0, 1]2. According to the mean value theorem, we may
choose two points p∗1, p

∗
2 on this line segment such that

x(p′′)− x(p′) = L(p′′ − p′), (3.1)

where L is the linear transformation represented by L = (xu(p
∗
1),xv(p

∗
2)).

Let

F (p1, p2) = det(xu(p1),xv(p2)),

then F (p∗1, p
∗
2) = det(L). Moreover, since x is C2, then F is C1 continuous, and F (p, p) ≥ γ,

there exists a circular neighborhood B of p lying in [0, 1]2, such that F (p1, p2) ≥ γ for all choices
of the points p1, p2 in B. We shall prove that x is a one to one mapping in B. Assuming that
p′ and p′′ lies in B and x(p′) = x(p′′), we will prove p′ = p′′. Since p′ and p′′ lies in B and B is
convex, the entire line segment joining p′ to p′′ also lies in B, hence both p∗1 and p∗2 are points
of B. Using the property of B, we have F (p∗1, p

∗
2) = det(L) ̸= 0. The linear transformation L is

therefore nonsingular. According to (3.1) and using the assumption that x(p′) = x(p′′), we have
L(p′′ − p′) = 0. Since L is nonsingular, therefore we deduce that p′ = p′′, i.e. x is a one to one
mapping in B.

Lemma 3.2 x : [0, 1]2 → [0, 1]2 satisfying (i)-(iii) is a locally homeomorphism.
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Proof. According to Lemma 3.1, x is a locally one to one mapping in [0, 1]2. Given a point
p ∈ [0, 1]2, assuming that x is one to one in a neighborhood B of p, then it is obvious that
x : B → x(B) is surjective, where x(B) denotes the range of x in B. And from Theorem 3.1,
we know that x−1 is continuous in x(B). Thus, x is homeomorphic in B, i.e. x is a locally
homeomorphism.
Proof of Theorem 2.1 It is obvious that [0, 1]2 is connected and compact. From Lemma 3.2
and Theorem 3.2, we deduce that x is a covering map. And since [0, 1]2 is arcwise connected
and simply connected, according to Theorem 3.3, x is a homeomorphism. Thus, we obtain that
x is an injection and surjection. The result is deduced.

4 Existence and uniqueness of x

This section devotes to the proof of Theorem 2.2.

Lemma 4.1 Let ρ(x,y) = ∥x− y∥X , then X is a metric space.

Proof. It is obvious that X is a nonempty set, and ρ(x,y) satisfies,
(i) ρ(x,y) ≥ 0 , and ρ(x,y) = 0 if and only if x = y;
(ii)ρ(x,y) = ρ(y,x);

(iii)ρ(x, z) =

(∫ 1

0

∫ 1

0
|x− z|2dudv

) 1
2

=

(∫ 1

0

∫ 1

0
|x− y + y − z|2dudv

) 1
2

≤
(∫ 1

0

∫ 1

0
|x− y|2dudv

) 1
2

+

(∫ 1

0

∫ 1

0
|y − z|2dudv

) 1
2

= ρ(x,y) + ρ(y, z).

Hence X is a metric space. Under the distance ρ, we denote this metric space as (X, ρ).

Lemma 4.2 (X, ρ) is a closed set.

Proof. Suppose that {xk} is a fundamental sequence in the space (X, ρ). This sequence can be

written as xk(u, v) =
m+2∑
i=0

n+2∑
j=0

(aij)kNi,3(u)Nj,3(v). It is easy to deduce that (aij)k are bounded,

hence there exists a subsequence (aij)kl converging to (aij)0. Because {xk} is a fundamental
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sequence, we obtain that,

lim
k→∞

xk(u, v) = lim
l→∞

xkl(u, v)

= lim
l→∞

m+2∑
i=0

n+2∑
j=0

(aij)klNi,3(u)Nj,3(v)

=

m+2∑
i=0

n+2∑
j=0

(aij)0Ni,3(u)Nj,3(v).

Let x0(u, v) =
m+2∑
i=0

n+2∑
j=0

(aij)0Ni,3(u)Nj,3(v). Because the range of xk is [0, 1]2 which is a closed

set, we obtain that x0(u, v) ∈ [0, 1]2.
On the other hand, it is obvious that x0(0, v) = [0, v]T , x0(1, v) = [1, v]T , x0(u, 0) = [u, 0]T

and x0(u, 1) = [u, 1]T . Moreover, because det((xk)u, (xk)v) ≥ γ, hence
det((x0)u, (x0)v) = lim

k→∞
det((xk)u, (xk)v) ≥ γ, i.e. x0(u, v) ∈ X. Therefore, X is a closed set.

Lemma 4.3 X is a self-sequentially compact set.

Proof. Because the number of the bicubic B-spline bases is finite, X is a finite dimensional
space. On the other hand, x(u, v) : [0, 1]2 → [0, 1]2, hence ∥x(u, v)∥ ≤ 2. According to Lemma
4.2, X is a closed set. Then we conclude that X is a self-sequentially compact set.

Proof of Theorem 2.2 Let xn be a minimizing sequence for the model (2.1), i.e.

lim
n→∞

E (xn) = inf
x∈X

E (x).

According to Lemma 4.3, X is a self-sequentially compact set. Thus, there exists a subsequence
xnk

and x0 in X such that xnk
→ x0.

Finally, because I1(x) is defined as a continuous function, X is a bounded closed set, hence
I1(x) is a uniformly continuous function with respect to x. For every ε > 0, there exists a δ > 0
such that |I1(x)− I1(y)| < ε when |x− y| < δ. Therefore,∣∣∣∣∫ 1

0

∫ 1

0
|I1(x)− I0|2dudv −

∫ 1

0

∫ 1

0
|I1(y)− I0|2dudv

∣∣∣∣
≤

∫ 1

0

∫ 1

0
|I1(x)− I1(y)||I1(x) + I1(y)− 2I0|dudv ≤ Mε

where M is a constant. Similarly, we can get that
∫ 1
0

∫ 1
0 (g(x(u, v))−1)2dudv is continuous about

x. Hence the energy functional

E (x) =

∫ 1

0

∫ 1

0
|I1(x)− I0|2dudv + ε

∫ 1

0

∫ 1

0
(g(x(u, v))− 1)2dudv

is continuous with respect to x. Thus,

E (x0) = lim
k→∞

E (xnk
) = inf

x∈X
E (x),

i.e., x0 is a minimum point of ε(x).
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5 Existence and uniqueness of ODE’s solution

In this section, we show that equation (2.7) has a unique solution. First, we introduce Gronwall’s
inequality.
Gronwall’s inequality [12] If (i) g(t) is continuous on t0 ≤ t ≤ t1, (ii) g(t) satisfies the
inequality

0 ≤ g(t) ≤ K + L

∫ t

t0

g(s)ds on t0 ≤ t ≤ t1,

then

0 ≤ g(t) ≤ KeL(t−t0) on t0 ≤ t ≤ t1.

Hence, if K = 0, then g(t) = 0.
Now we prove the existence and uniqueness for the equation (2.7). The problem (2.7) can

be written as dx⃗(t)

dt
= M−1Q⃗(x⃗(t)),

x⃗(0) = c⃗0,
(5.1)

where

x⃗(t) =
[
xT
0 (t),x

T
1 (t), · · · ,xT

n0−1(t),x
T
n0
(t)

]T
,

M−1 = [mij ]
−1 ⊗ I2, i, j = 1, 2, · · · , n0,

Q⃗(x⃗(t)) = −
[
qT
0 ,q

T
1 , · · · ,qT

n0−1,q
T
n0

]T
,

and

c⃗0 =
[
cT0 , c

T
1 , · · · , cTn0−1, c

T
n0

]T
, (5.2)

with c⃗0 satisfing

n0∑
j=0

cjϕj(u, v) +

n1∑
j=n0+1

xjϕj(u, v) = I(u, v), (5.3)

where I(u, v) = [u, v]T.

Remark 5.1 Because xn0+1, xn0+2, · · · , xn1 are fixed on the whole iterative process, hence
x = [xT

n0+1,x
T
n0+2, · · · ,xT

n1−1,x
T
n1
]T is a constant vector.
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For the simplicity, we denote f⃗(x⃗(t)) = M−1Q⃗(x⃗(t)) where f⃗(x⃗(t)) = [fT0 (x⃗(t)), f
T
1 (x⃗(t)) · · · ,

fTn0−1(x⃗(t)), f
T
n0
(x⃗(t))]T. Now we prove the existence and uniqueness of the solution for the

equation (5.1). First, a positive number δ needs to be determined using the mapping x(u, v).
Integrating both sides of (5.1), we have

x⃗(t) = c⃗0 +

∫ t

0
f⃗(x⃗(t))dt.

Taking inner product of both sides with [ϕ0, · · · , ϕn0 ]
T and using (5.3), we have

x(u, v) = I(u, v) +

n0∑
j=0

∫ t

0
fj(x⃗(s))ϕj(u, v)ds.

Let F(x⃗(t), u, v) =

n0∑
j=0

fj(x⃗(t))ϕj(u, v). Then it is obvious that F(x⃗(t), u, v) is continuous with

respect to t. According mean value theorem,∫ t

0

n0∑
j=0

f
(l)
j (x⃗(s))ϕj(u, v)ds = tF (l)(x⃗(ξl), u, v), where 0 < ξl < t, l = 1, 2.

Then let

det(xu,xv) =

∣∣∣∣∣ 1 + tF
(1)
u (x⃗(ξ1)) tF

(1)
v (x⃗(ξ1))

tF
(2)
u (x⃗(ξ2)) 1 + tF

(2)
v (x⃗(ξ2))

∣∣∣∣∣ = γ,

By computing the determinant, we get

(F
(1)
u (x⃗(ξ1))F

(2)
v (x⃗(ξ2))− F

(2)
u (x⃗(ξ2))F

(1)
v (x⃗(ξ1)))t

2

+(F
(1)
u (x⃗(ξ1)) + F

(2)
v (x⃗(ξ2)))t+ 1− γ = 0.

(5.4)

For convenience, let

a(xξ1 ,xξ2) = F (1)
u (x⃗(ξ1))F

(2)
v (x⃗(ξ2))− F (2)

u (x⃗(ξ2))F
(1)
v (x⃗(ξ1)),

b(xξ1 ,xξ2) = F (1)
u (x⃗(ξ1)) + F (2)

v (x⃗(ξ2)),

where xξ1 and xξ2 are the mappings in X defined by the coefficients x⃗(ξ1) and x⃗(ξ2), respectively.
Then we can get a minimal positive root as following,

t(xξ1 ,xξ2) =
2(1− γ)

−b(xξ1 ,xξ2) +
√

b2(xξ1 ,xξ2)− 4a(xξ1 ,xξ2)(1− γ)
. (5.5)

Let

Ω(x,y) =
{
[u, v]T ∈ [0, 1]2 : b2(x(u, v),y(u, v))− 4a(x(u, v),y(u, v))(1− γ) ≥ 0,√
b2(x(u, v),y(u, v))− 4a(x(u, v),y(u, v))(1− γ) ≥ b(x(u, v),y(u, v))

}
.

Then Ω(x,y) is closed set.
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Lemma 5.4 Let

δ = min
x,y∈X

min
[u,v]T∈Ω(x,y)

t(x,y). (5.6)

then δ > 0. Furthermore, if 0 ≤ t ≤ δ, then det(xu,xv) ≥ γ.

Proof. Let

y(t) = det(xu,xv)− γ = at2 + bt+ 1− γ, F(x⃗(t), u, v) =

n0∑
j=0

fj(x⃗(t))ϕj(u, v).

We can easily prove that F(x⃗(t), u, v) are C2 continuous functions in the space X and [0, 1]2.

Because X and [0, 1]2 are closed sets, hence F
(l)
u (x⃗(ξl), u, v) and F

(l)
v (x⃗(ξl), u, v) (l = 1, 2) are

bounded functions. δ > 0 is proved. On the other hand, because y(0) = 1 − γ > 0, therefore
y(t) > 0 is true when 0 ≤ t ≤ δ.

Defining a region ℜ as following,

ℜ =

{
x⃗(t) : det(xu,xv) ≥ γ,where x =

n0∑
j=0

xjϕj(u, v) +
n1∑

j=n0+1
xjϕj(u, v)

}
. (5.7)

Lemma 5.5 M−1Q⃗(x⃗(t)) is Lipschitz continuous with respect to x⃗ on ℜ when 0 ≤ t ≤ δ.

Proof. Because

D1x =
∂x

∂u
=

n1∑
j=0

xj
∂ϕj(u, v)

∂u
, D2x =

∂x

∂v
=

n1∑
j=0

xj
∂ϕj(u, v)

∂v
.

It is obvious that Dlx are the polynomials of xj(t) (j = 0, 1, · · · , n0), l = 1, 2.
Compute

(D1x)u =
∂2x

∂u2
=

n1∑
j=0

xj
∂2ϕj(u, v)

∂u2
, (D1x)v =

∂2x

∂u∂v
=

n1∑
j=0

xj
∂2ϕj(u, v)

∂u∂v
,

we deduce that (D1x)u and (D1x)v are the polynomials of xj(t) (j = 0, 1, · · · , n0). Similarly,
(D2x)u and (D2x)v are the polynomials of xj(t) (j = 0, 1, · · · , n0). From

Φu = (Dlx)u(Dlx)
Tϕi + (Dlx)(Dlx)

T
uϕi + (Dlx)(Dlx)

T(ϕi)u,

it is easy to deduce that Φu is the polynomial of xj(t). Similarly Φv and g(x) are the poly-
nomials of xj(t). Because on the interval [0, δ], ℜ is a closed set, hence we conclude that∫ 1
0

∫ 1
0 (Φ

T
uα + ΦT

v β)dudv is Lipschitz continuous on ℜ. Furthermore, since I1(x) and I0 are C2,∫ 1
0

∫ 1
0

(
(I1(x)− I0)(Dlx)

T(∇xI1)(Dlx)ϕi

)
dudv is Lipschitz continuous on ℜ. Thus, M−1Q⃗(x⃗(t))

is Lipschitz continuous on ℜ.
Now we construct successive approximations which are defined as follows:{

x⃗k+1(t) = c⃗0 +
∫ t
0 f⃗(x⃗k(s))ds, k = 0, 1, 2, · · ·

x⃗0(t) = c⃗0,
(5.8)
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Theorem 5.1 Each function x⃗k defined by (5.8) lies in ℜ for 0 ≤ t ≤ δ, k = 0, 1, 2, · · · .

Proof. Because x⃗0(t) = c⃗0 and the equality (5.3), we deduce that x⃗0 lies in ℜ. Moreover,
according to

x⃗k+1(t) = c⃗0 +

∫ t

0
f⃗(x⃗k(s))ds, (5.9)

we obtain that

xk+1 =
n0∑
j=0

(xk+1)j(t)ϕj(u, v) +
n1∑

j=n0+1
xjϕj(u, v)

= I(u, v) +

n0∑
j=0

∫ t

0
fj(x⃗k(s))ϕj(u, v)ds.

Let Fk(t, u, v) =

n0∑
j=0

fj(x⃗k(t))ϕj(u, v). It is obvious that Fk(t, u, v) is continuous with respect

to t. According the mean value theorem,∫ t

0

n0∑
j=0

f
(l)
j (x⃗k(s))ϕj(u, v)ds = tF

(l)
k (ξl, u, v), l = 1, 2,

where 0 ≤ ξl ≤ t ≤ δ. From Lemma 5.4, we have

det((xk+1)u, (xk+1)v) =

∣∣∣∣∣ 1 + t(Fk)
(1)
u (ξ1) t(Fk)

(1)
v (ξ1)

t(Fk)
(2)
u (ξ2) 1 + t(Fk)

(2)
v (ξ2)

∣∣∣∣∣ ≥ γ when 0 ≤ t ≤ δ.

Thus, x⃗k+1 ∈ ℜ for 0 ≤ t ≤ δ.
The proofs of Lemma 5.6, Lemma 5.7 in the following are similar as that of Theorem I-1-4

in [12]. For completeness, we give the details.

Lemma 5.6 The successive approximations given by (5.8) satisfy the estimates

|x⃗k+1(t)− x⃗k(t)| ≤
MLk

(k + 1)!
tk+1 for 0 ≤ t ≤ δ, k = 0, 1, 2, · · · . (5.10)

Proof. We use mathematical induction. When k = 0, we have |x⃗1(t)− x⃗0(t)| = |
∫ t
0 f⃗(c⃗0)ds| ≤

Mt. Assume that the result is true for k, then

|x⃗k+1(t)− x⃗k(t)| =

∣∣∣∣∫ t

0

(
f⃗(x⃗k(s))− f⃗(x⃗k−1(s))

)
ds

∣∣∣∣
≤ L

∣∣∣∣∫ t

0
|x⃗k(s)− x⃗k−1(s)|ds

∣∣∣∣
≤ MLk

k!

∣∣∣∣∫ t

0
skds

∣∣∣∣ = MLk

(k + 1)!
tk+1.

(5.11)
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Lemma 5.7 The sequence x⃗k(t), k = 0, 1, 2, · · · , converges to

x⃗(t) = c⃗0(t) +
∞∑
k=1

(x⃗k(t)− x⃗k−1(t)) (5.12)

uniformly on 0 ≤ t ≤ δ as k → ∞.

Proof. According to Lemma 5.6, for a given ε > 0, there exists a positive integer N such that

∞∑
k=N

|x⃗k(t)− x⃗k−1(t)| ≤
M

L

∞∑
k=N

(Lt)k

k!
≤ M

L

∞∑
k=N

(Lδ)k

k!
< ε. (5.13)

Thus the series
∞∑
k=1

(x⃗k(t) − x⃗k−1(t)) is uniformly convergent on 0 ≤ t ≤ δ. On the other hand,

since x⃗N (t) = c⃗0(t) +
N∑
k=1

(x⃗k(t)− x⃗k−1(t)), the result is proved.

Proof of Theorem 2.3. Because

x⃗k+1(t) = c⃗0 +

∫ t

0
f⃗(x⃗k(s))ds, (5.14)

the continuity of x⃗ and Lemma 5.7, we conclude that

x⃗(t) = c⃗0 +

∫ t

0
f⃗(x⃗(s))ds. (5.15)

Then

dx⃗(t)

dt
= f⃗(x⃗(t)), (5.16)

hence x⃗(t) is a solution of (5.1).
To prove the uniqueness, suppose that y⃗(t) is another solution of problem (5.1) on the interval

[0, δ]. Note that

y⃗(t) = c⃗0 +

∫ t

0
f⃗(y⃗(s))ds (5.17)

on 0 ≤ t ≤ δ. Hence using the Lipschitz continuity of f⃗ , we have

|x⃗(t)− y⃗(t)| =
∣∣∣∣∫ t

0
(f⃗(x⃗(s))− f⃗(y⃗(s))ds

∣∣∣∣ ≤ L

∫ t

0
|x⃗(s)− y⃗(s)|ds (5.18)

on 0 ≤ t ≤ δ. Applying Gronwall’s inequality, we conclude that |x⃗(t) − y⃗(t)| = 0 on 0 ≤ t ≤ δ.
Hence we complete the proof of the Theorem.
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6 Conclusion

We have presented an algorithm for solving the flexible alignment problem in [27]. This paper
analyzes the validity of the model from the theoretical point of view. We have proved the
regularity of mapping x(u, v) under certain conditions. We also proved that there exists a
mapping x0(u, v) ∈ X satisfying (i)-(iii) such that the energy functional (2.1) is minimized. For
the systems of the ordinary differential equations derived from the finite element discretization
in the spatial direction, the existence and uniqueness of the solution have been proved.
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