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Abstract

This paper looks at the development of a class of Exponential Compact Higher Order (ECHO) schemes and
attempts to comprehend their behaviour by introducing different combinations of discrete source function
and its derivatives. The characteristic analysis is performed for one-dimensional schemes to understand the
efficiency of the scheme and a similar analysis has been introduced for higher dimensional schemes. Finally,
the developed schemes are used to solve several example problems and compared the error norms and rates

of convergence.
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1. Introduction

Many interesting engineering problems involve the
physical processes and transport phenomena that include
fluid flow, heat and mass transfer, can be modelled by a
general Convection-Diffusion Equation (CDE). This
equation describes the convection and diffusion chara-
cteristics of various physical quantities, such as mome-
ntum, energy, concentration, etc. This paper deals with
the numerical solution of convection-diffusion equation
of the form

—au, —bu, +cu +du, = f(x ») 1)
on Qc R?, with boundary conditions
u(x, y)=g(x, y) on oQ, )

where a, b>0 are constant diffusion, ¢, d are
constant convection coefficients and f , g are
sufficiently smooth functions with respectto x and y.
If 0<a, b<<1 are very small when compared with
¢ and d, then (1) becomes a convection dominated
equation for which [1-4] are some of the exponential
schemes known from the literature. For higher dim-
ensional problems, though the schemes [2-4] are all
fourth order accurate, scheme presented in [4] seems to
be giving better results over the other two. The purpose
of this work is to understand the good features of the
scheme given in [4] and based on these features include
some additional conditions in the development of ECHO
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schemes. Since the development of these schemes is
already been discussed in [4], instead of repeating the
same in this work, we focus on understanding the merits
of the scheme. Section two presents a new class of
ECHO schemes for 1D CDE, their classification and
numerical verification. Echo schemes for 2D CDE are
formulated and compared in the Section three and
conclusions are drawn in the last section.

2. 1D Convection-Diffusion Equations

The one dimensional equivalent of (1), by fixing
b=d =0, isgiven by

—au  +cu, = f(x), 0<x<1, 3)
with boundary conditions «(0) =g,, u(l)=g,, where

g,, g, aresome constants.
2.1. ECHO Schemes

A general strategy to develop ECHO schemes is by
starting with the difference equation

—athu,. +cDu, = F, 4)
where D,u, = (u,,,—u, )/ 2h and D}u, = (u,,, —2u, +
u,_,)/ h* over a uniformly distributed nodal points with

step length % and F, is a linear combination of the
source term f; and its derivatives at a chosen number

AJCM



40 SV.SS.YEDIDA ET AL.

of stencil (mesh) points with equal number of arbitrary
constants (refer [2-4] for three such different choices).

a is taken to be %coth [;—hj when the convection
a

coefficient ¢#0 so that the difference Equation (4) is
exact for e(7j otherwise it is equal to a. If F, is
taken as f, then (4) is a second order compact
exponential scheme which was discussed in [5]. In the
development of the ECHO scheme, the arbitrary
constants in £, are obtained by making the difference

Equation (4) is exact for x, x*, x°,--- In this work

four different stencils are used for F, and the

corresponding constants have been computed by forcing
the difference scheme (4) to be at least fourth order
accurate. The four chosen stencils and their constants are
given by (refer [3,4] for the complete derivation of the
computation of the coefficients).

2.1.1. Stencil-1
Consider the discrete source function

F=afa+of+efinte(f) ()
where f;, (f.), are the source function and it’s
derivative, respectively, at the nodal point ;. The

cx

Equation (4) is already exact for <1, ¢/l and

enforcing the exactness also for {x, x*, x*, x*!" gives
four simultaneous equations in terms of its coefficients.
Solving them for ¢,, i=1, 2, 3&4 gives

¢ = %—3ﬁ3 +p° ~0.58+3p% — fy +0.25y ,
_2_2 2
c, = 3 B +2py,

¢, =%+3ﬂ3 + B2 +058-34% — By —0.25y ,

¢, =h(-68°—05y+68%), =L, =<

= h(-647 =05y +68°), p=—, y=—
for ¢=0

and cl=i, 02=E, ¢ L ¢, =0 when ¢=0.

12 6" ° 12°

Similarly for the other stencils, system of equations
are obtained and solved to get the corresponding co-
efficients.

2.1.2. Stencil-2

E=afite,(fiata(f)i+alf)n  (6)

when ¢ =0 the coefficients are
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q =1,
1 1 1
=h| Zf+p-058 ————y— B2y +058y |,
C, (6/? B i TR By /37)
2 5
Cszh[gﬁ—zﬂa—gﬂ“rzﬁzifj,
1 1 1
=h| =B+ +05p°+———y—p*y-05
Cy (Gﬂ B i o 127 By ﬂ7j
—h h
and ¢ =1, c2=§, ¢ =0, c4=ﬁ for ¢=0.

2.1.3. Stencil-3
F=afi+e,(f) te(fo)i ta(f) (1)

when ¢ =0 the coefficients are
1
aq=1, ¢, =h(f-y), nghz(gﬁL/’ﬂ_ﬂ?/)’
1 1
=1 B p- -y,
¢ [ﬂ Gﬂ By 127]
h2

and ¢, =1, ¢, =0, = ¢, =0 for ¢=0.

2.1.4. Stencil-4
Fo=afiatefitefiata(f) +a(fy),  (8)

when ¢ =0 the coefficients are

¢, =128 -3B°(1+4y) + B> (2+3y)
- B(0.5+ ) +(0.1+0.25y)

c, =—24p" +243% —4B* +2py+0.8,

c; =128 +3B8°(1-4y)+ f*(2-3y)
+ £(0.5-y)+(0.1-0.25y)

¢y = —h(64° ~6/7y +0.57),

cs = —h? (12/34 128 + f5° _ij ,

15
1 14 1 h?
and 61:%’ CZZE’ 03251 04:01 05:2_0
for ¢=0.

Schemes with stencils 1, 2 and 3 contain four
parameters and are fourth order accurate, whereas the
scheme with stencil 4 contains five parameters and is
sixth order accurate. Here after, we refer the difference
scheme (4) with stencils 1 to 4 as schemes SI'”! to
SIPT " respectively for all the future references.
Exponential schemes of [2,3] are also fourth order
accurate with three arbitrary parameters and the scheme
given in [4] uses six parameters to generate a sixth order
scheme for the chosen one-dimensional convection-
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diffusion equation. The discrete source terms of these
schemes [2-4] are given by.
Stencil used in [2]:

F=caf i+ f+cefi ©)
1 2
q :g+ﬁ2 ~0.58-py+05y, ¢, :§—2ﬂ2 +28y,

03:%+ﬂ2+0'5ﬂ_ﬁ7_0'57 when ¢#0,

clzi, ¢, :E, ¢ =1 when ¢=0.
12 6 12
Stencil used in [3]:
Fo=cafi+c,(f)i+e(fu) (10)

a=1, ¢, =h(B-7), ¢ =h2(ﬂ2+%—ﬂyj

when c¢=#0,
2

¢ =1, ¢,=0, ¢ =f—2 when ¢=0.
Stencil used in [4]:
F=caf +ofi+cfin
+e ([ )i+ es(f)i + 66 (fo)in
when ¢ =0 the coefficients are
¢, =908° —(12+90y) B* +(7.5+12y) p°

(11)

-05+y)p +%+ 0.375y

c, = 24ﬂ4+%—24ﬂ37+2ﬂ}/,
c; =908° - (12+90y) B* +(7.5+12y) B
7 1
—(0.5+ +—+0.375
( 7B 30 /4
308° -64*(1+5y)+(3.5+6y)5°
! —(0.5+ )ﬁ2+(i+5 )
Sty 0+
cs = h(1208° —1208*y +85° + 2%y — 1),
304° +68*(1-5y) +(3.5-6y)8°

¢, =h 1 )
° | +05-p)p° —(5—57j
2 11 2 h
and Cl:E' 02=E, c3=E, c4=4—0, ¢ =0,

062_—h for ¢=0.
40

Name the scheme (4) with stencils used in [2-4] as
schemes SI™1, SUPT and SI'1) respectively. That is,
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a total of seven ECHO schemes have been introduced
until now and out of which five of them are fourth order
accurate and the other two are sixth order accurate.
Among the fourth order schemes, three of them,
developed in this work, have four free parameters and
the other two, taken from the literature [2] and [3], have
three parameters. Among the sixth order schemes, one
scheme developed in this work has five free parameters
and the other taken from the literature SI'*”! has six
parameters. That is, the seven schemes can be classified
into »” order schemes with » number of parameters
and the other contain less than » number of parameters.
The aim of the rest of the work is to demonstrate, using
wave number analysis and numerical experimentation,
the n” order ECHO schemes with » parameters are
more accurate than the other class of schemes.

2.2. Comparison of the Characteristic Curves

Using the wave number analysis, resolution of any
numerical scheme can be measured with which one can
understand the closeness of the characteristic of a
difference equation to that of the differential equation [6].
Since the stability of any numerical scheme dependscgn
the magnitude of the peclet number, defined by p=—,
in this work, the characteristics are compared wth
respect to peclet numbers. The characteristic of the
governing Equation (1), obtained by substituting e™ in
the place of the dependent variable u, is given by:

2
ABPY = 5{‘”— + Igo] (12)
h\ p

where @=wh, w is the wave number, 7=+-1.
Similarly, the characteristics of the difference schemes
are obtained by substituting " at u, to get (refer
[4,6] for more details).

Characteristic Curve for S

A0 = E(yw" +1w'] (13)

h\ z,+1Iz
C “ 1 p
where w =sing, w =2-2c0s¢, y—z cothE ,

z = o+ (g —)sing,  z, = (uy + 44)COS @,

ty = ig(pg (0-257+%j—p2(y+0-5) +p(3y +1) —3] :
P
1(2,
== |Zp2+2yp-2],
s pz[sp ¥p j

-1 1
My = F(f (0-257—gj+ p’Br-1)-p(y-05) +3] :
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-1
Hy = ?(0-57/173 -67p—6).

Characteristic Curve for SI'®:

pr zg[ywl#lw'] (14)

h\ z,+1Iz
where
w =sing, w =2-2cosg,
_1 P _
r=s5 Cothz 12 = @+ (Hy + 1) COS
z, =t~ (g — p)psing, gy =1,

-1, (1 1
= PP+ p? —y—=1-05p(y-1)+(y-1) |,
Hy ps(p p (127 6} p(y -1 +(r )j

N Y _
ug—pg( P (6y 3j+2p(;/ 1)],

(s o1 1Y) ) (-
m—ps(p P (127 6) 0.5p(y-1)-(» 1))-

Characteristic Curve for SI'°:

ﬂéw] zf[yw” +IW'J (15)

h\ z,+1Iz

where
w =sing, w =2-2cosg, y:%(cothg)

) :¢(ﬂ2_ﬂ4¢’2)v 2, :/LLL_/LIB(DZ’ =1,

1 1(, 1
ty ==QA=py), H =—2(1+—p2 —py),
P P 6

1(, 1, 1 sj
= —(1+=p’—py——=pr |.
Hy ps( LA e

Characteristic Curve for SI'°:

/IF'D] :£ yw +Iw (16)
h\ z,+1Iz

where (1) [2]S4
w=sing, w =2-2c0s¢, ¥ :%[cothgj ,
2 = a9+ (15— ) sing,
2, =y~ "+t + 14)COS @,
= %(12—3p(1+ 4y)+ p*(2+3y)

- p*(0.5+ )+ p*(0.1+0.25y))
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Figure 1. Comparison of real and imaginary parts of A"

at p=0.1.

M, = %{—24+24p7—4p2 +2p%7+0.8p"},
p

1
Uy = ?(12+3p(1—47) +p*(2-3y)

+p*(0.5-y)+ p*(0.1-0.25y))

-1
Hy = ?(6 —6py+0.5p%y),

Hs =p—41(12—12p7+p2 —%p“j-

Both real and imaginary parts of the characteristics
(13-16) are compared with (12) in Figures 1, 2 and 3 for
peclet numbers 0.1, 10 and 100, respectively. For the
sake of comparison, the characteristics of the Schemes
SpPr 1 sUPT and ST are also included in these
figures. It is clear from these comparisons that the
Scheme SM”! is the best among the chosen schemes
followed by S;”. These comparisons can be quantified
by introducing Resolving efficiency.

2.3. Resolving Efficiency

The resolving efficiency [7] of any numerical scheme,
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----g [1D] s
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Figure 2. Comparison of real and imaginary parts of A"
at p=10.

defined by %, is a number between 0 and 1. ¢, ,
v

independent of the grid size, is the maximum value of
¢ for which [1, -4, | is less than a tolerance &

xact
Resolving efficiencies are computed for various schemes
with different tolerance limits & and presented in
Tables 1, 2 and 3, for peclet numbers 0.1, 10 and 100,
respectively. It is clear from these tables that Scheme in
[4] has a very good resolving efficiency followed by
SUPY Also, a careful look at these tables reveals that, for
small peclet numbers, say for p=0.1, all the fourth

order schemes have more or less equal resolving
efficiency, however, for p =10 and 100, the fourth
order schemes with four parameters have a much better
resolving efficiency than the Schemes given in [2] and
[3]. Since Re(A) of these schemes resolved to a much

less value for p =10 and 100, these are more prone to

dissipation error which ultimately results into loss of
accuracy. To demonstrate the effect of the resolution of
various schemes on the accuracy of the generated
numerical solutions, these schemes have been used to
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Figure 3. Comparison of real and imaginary parts of A"
at p=100.

solve few model problems and compared their error
norms in the next subsection.

2.4. Verification with Numerical Examples

Two distinct one-dimensional problems with sharp
boundary layers are chosen for the purpose of numerical
verification.

2.4.1. Example

Consider —eu, +u, =ex’sinmx+mncosmy , 0<¢g<<
1, 0<x<1 for which u(x)=sinmx+ (e -1)/(e"*
—1) is the exact solution with a sharp boundary layer,
for small values of ¢, towards x=1.

2.4.2. Example

+7° cos

2
Consider —su_ +u, = id S t+e >
Q+xeé) 1+x¢)

m)-msinme, 0<e<<1l, 0<x<1 for which u(x)

=In(1+xg)+cosmx is the exact solution.
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Table 1. Resolving efficiency of the real and imaginary
partsof A"™ at p=0.1.

Re(A%) Im(A™")

Scheme §=01 §=001 §=0001 §=01 §=0.01 &=0.001
ST 068 039 022 065 038 022
s 055 030 047 053 030 017
SET 070 042 024 068 042 024

S,[,“’] 1.00 0.75 0.52 0.83 0.60 0.42
Scheme

[2]

Scheme

(31

Scheme

[4]

0.69 0.38 0.21 0.52 0.29 0.16

0.70 0.42 0.24 0.55 0.32 0.18

0.95 0.67 0.45 0.89 0.64 0.44

Table 2. Resolving efficiency of the real and imaginary
partsof 2™ at p=10.

Re(A"7) Im(A%"")

Scheme §=01 §=0.01 §=0.001 §=0.1 §=0.01 §=0.001
Si! 0.59 0.32 0.18 0.68  0.37 0.21
Su) 0.44 0.24 0.13 052 0.28 0.16
N 0.56 0.33 0.19 0.63 037 0.22

S 0.64 0.36 0.20 0.95 0.66 0.45
Scheme

[2]
Scheme
[3]

Scheme

[4]

0.16 0.05 0.01 0.77 0.39 0.20

0.18 0.05 0.01 0.63 0.42 0.24

0.87 0.59 0.45 1.00 0.69 0.46

Table 3. Resolving efficiency of the real and ima-
ginary parts of A" at p=100.

Re(4") Im(A")

Scheme §=01 &6=0.01 §=0001 §=0.1 §=0.01 & =0.001
N 0.31 0.16 0.11 074 042 0.21
N 0.21 0.16 0.11 053 032 0.16
s 0.26 0.16 0.11 0.63  0.37 0.21

Seo 0.36 0.21 0.16 0.89 0.63 0.42
Scheme
[2]
Scheme
[3]
Scheme

(4]

0.05 0.05 0.05 0.58 0.32 0.21

0.05 0.05 0.05 0.52 0.32 0.21

0.57 0.42 0.26 1.00 0.73 0.52

Model problems (2.4.1.) and (2.4.2.) are solved using
the seven schemes SM? and SI'”!. To vary the peclet
number, the number of nodes has been varied from 11 to
81 and the diffusion parameter has been varied between
10" and 107 The errors, computed using the infinity
norm, are compared in the Tables 4 and 5 for problems
(2.4.1.) and (2.4.2.), respectively (read 1.234567(-08) as
1.234567x107% in all these tables).
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The comparison of the error norms for various
schemes reveals that for the peclet number p less than
one, the accuracy of all the fourth order schemes are
more or less equal however, the accuracy of the solutions
of the S;” to S;” becomes better over schemes in [2]
and [3] if p is increased to 1. The improvement in the
accuracy becomes even better, better by two decimal
places, if p is increased to 10 or more. This behavior
supports the characteristic analysis carried out in the
earlier section wherein we have shown that the resolving
efficiency of schemes in [2] and [3] is much smaller than
the other fourth order schemes at large peclet numbers.
This concludes that to develop fourth order schemes
using four parameters may improve the resolving
efficiency and hence the accuracy of the numerical
schemes. The same is also can be concluded between the
sixth order schemes. The solutions generated using
Scheme in [4] are uniformly far superior, for the entire
range of peclet numbers 0.1 to 100, over all the schemes,
where as S;” is comparable only at low peclet numbers.
Further, between the three developed fourth order
schemes, S;” has less resolving efficiency and the
solutions obtained using this scheme are slightly inferior
when compared with the other two, however, it is still
has a better performance than the two existing three
parameter schemes.

3. 2D Convection-Diffusion Equations

Efficiency of every numerical scheme can be established
computationally by solving a class of example problems
but analysis of the used numerical scheme is more
important to gain confidence before applying them for
real world problems. Usually, the efficiency of the higher
order compact schemes for one-dimensional stationary
CDE is shown by studying their monotonicity or
comparing their characteristic curves. For 2D schemes,
the comparisons have to be made characteristic surfaces.
The development of a 2D scheme for the two-
dimensional CDE (1) is already presented in [4] and
using a similar procedure, 2D equivalents for the
schemes S;” to S,” can be developed as follows:

3.1. ECHO Schemes

The development of an ECHO scheme for a two
dimensional CDE will be given in a general procedure
such that a similar procedure can be followed for
different source functions. When the convection
coefficients are constant, the two-dimensional equivalent

of (4) is given by
—a,Dju, ; — o, Diu, . +cDyu, , +dDu, = F, . (17)
where Dyu, = (u,,, —u, ;) 2h, Dfu,.j. = (U, —2u

i1 i
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Table 4. Comparison of the error norms for the example 2.4.1.

£ N p Scheme [4]  Scheme[3]  Scheme [2] SEo! S N SE!
1 1 9.09604(—08) 2.49708(—04) 3.72418(—04) 5.82331(—07) 2.77555(—05) 1.08028(—04) 4.03898(—05)
10" 21 1/2 1.43583(—09) 1.77531(—05) 2.33358(—05) 9.10599(—09) 1.70241(—06) 6.76222(—06) 2.53384(—06)
41 1/4 2.24904(—11) 9.74330(—07) 1.46099(—06) 1.42770(—10) 1.05873(—07) 4.22750(—07) 1.58500(—07)
81 1/8 3.51524(—13) 6.09526(—08) 9.14209(—08) 2.22867(—12) 6.60876(—09) 2.64234(—08) 9.90844(—09)
11 10 8.88729(—08) 1.77531(—03) 2.29850(—03) 3.65241(—06) 4.88874(—05) 1.37564(—04) 4.53176(—05)
102 21 5 1.44506(—09) 1.62385(—04) 2.29640(—04) 8.90909(—08) 2.43375(—06) 7.90343(—06) 2.75463(—06)
4 25 2.25920(—11) 1.22054(—05) 1.79906(—05) 1.72607(—09) 1.22122(—07) 4.48986(—07) 1.63784(—07)
81 125  3.52121(-13) 8.11830(—07) 1.21217(-06) 2.89799(—11) 6.89257(—09) 2.68860(—08) 1.00024(—08)
11 100 8.77791(—08) 2.45467(—03) 2.54243(—03) 4.19056(—06) 6.92138(—05) 1.61527(—04) 4.75106(—05)
10° 21 50 1.48553(—09) 2.97753(—04) 3.20284(—04) 1.31316(—07) 4.37339(—06) 1.06444(—05) 3.17153(—06)
4 25 2.40075(—11) 3.46001(—05) 3.96217(—05) 4.02580(—09) 2.56511(—07) 6.58354(—07) 2.01890(—07)
81 125 3.77197(-13) 3.75653(—06) 4.71988(—06) 1.17706(—10) 1.37725(—08) 3.83374(—08) 1.23077(—08)
11 1000 8.74623(—08) 2.54393(—03) 2.54569(—03) 4.20028(—06) 7.21326(—05) 1.64144(—04) 4.74090(—05)
107 21 500 1.48149(—09) 3.19490(—04) 3.21770(—04) 1.32418(—07) 4.75839(—06) 1.10378(—05) 3.17837(—06)
A1 250 2.40094(—11) 3.97058(—05) 4.03276(—05) 4.14605(—09) 3.02745(—07) 7.10714(—07) 2.05097(—07)
81 125 3.81699(—13) 4.88803(—06) 5.04161(—06) 1.29496(—10) 1.88050(—08) 4.47559(—08) 1.30083(—08)
Table 5. Comparison of the error norm for the example 2.4.2.
& N P Scheme [4]  Scheme [3]  Scheme [2] st Si sp S
1 1 1.43890(—07) 1.94626(—04) 2.89270(—04) 4.22688(—07) 4.32687(—05) 1.70161(—04) 6.35454(—05)
10" 21 172 2.23695(—09) 1.24756(—05) 1.86690(—05) 6.76779(—09) 2.63582(—06) 1.04996(—05) 3.93304(—06)
4 1/4 3.49160(—11) 7.83288(—07) 1.17424(—06) 1.06559(—10) 1.64206(—07) 6.56127(—07) 2.45980(—07)
81 1/8 5.45044(—13) 4.90114(—08) 7.35061(—08) 1.67111(—11) 1.02436(—08) 4.09636(—08) 1.53605(—08)
1 10 1.96384(—07) 8.40121(—04) 1.06619(—03) 1.67762(—06) 1.04588(—04) 3.00805(—04) 9.83965(—05)
10° 21 5 2.97619(—09) 8.06763(—05) 1.13353(—04) 4.36902(—08) 4.94140(—06) 1.62042(—05) 5.63472(—06)
4 25 4.51730(=11) 6.21577(=06) 9.14492(—06) 8.72299(—10) 2.42789(—07) 8.96202(—07) 3.26724(—07)
81 125  6.98417(—13) 4.16436(—07) 6.21489(—07) 1.47730(—11) 1.36489(—08) 5.33073(—08) 1.98291(—08)
1 100 2.00935(—07) 1.12598(—03) 1.13629(—03) 1.85818(—06) 1.52895(—04) 3.65401(—04) 1.06674(—04)
10° 21 50 3.16771(—09) 1.42618(—04) 1.51699(—04) 6.19806(—08) 9.18371(—06) 2.25840(—05) 6.70649(—06)
4 25 4.94835(—11) 1.69497(—05) 1.93126(—05) 1.95897(—09) 5.25029(—07) 1.35391(—06) 4.14529(—07)
81 125  7.64628(—13) 1.86159(—06) 2.33386(—06) 5.81487(—11) 2.78268(—08) 7.76336(—08) 2.49046(—08)
1 1000  2.00962(—07) 1.16355(—03) 1.13359(—03) 1.85569(—06) 1.59831(—04) 3.72624(—04) 1.06834(—04)
10°* 21 500 3.16938(—09) 1.52631(—04) 1.51914(-04) 6.23029(—08) 1.00195(—05) 2.34902(—05) 6.74224(—06)
4 250 4.96365(—11) 1.94022(—05) 1.95976(—05) 2.01159(—09) 6.21278(—07) 1.46575(—06) 4.22341(—07)
81 125 7.76046(—13) 2.41622(—06) 2.48556(—06) 6.37930(—11) 3.80936(—08) 9.08791(—08) 2.63944(—08)

+ui—1,j)/h2 and Dkuij = (u

U i

ij+l

u,;4)1 2k, Diu,; =( and y— directions, respectively and discrete source
—2u,.j.+u,.vj_1)/k2 over a uniformly distributed function F; isa 2D equivalent of the corresponding 1D

nodal points with step lengths %~ and & along x-— scheme. The development of the 2D ECHO scheme is
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given bellow for different selection of source functions.

3.1.1. Scheme M
Consider the source function, which is an extension of
the scheme 2.1.1., given by

F*ij =afia et oS, te ()
tdif, atdofy+dyf, 0 +d(f),

The truncation error of the scheme (17) with the
source function (18) computed using Taylor series
expansion, is given by,

TE=Eu, +Gu,,
+Ku + £, +O(h")

(18)

+ Hu

xwi,j

(19)
xxyyi, j
where E =dK,+cL,, G=-bK, +cL,, H=dK,—alL,,
K =-bK, —al,
K, =h(c,—¢c)+c,, K, =h*(c;+¢,) 12,
L =k(dy—d,)+d,, L, =k*(d,+d,) /2
Expanding the terms in (19) and (20) shows that the
scheme (17) is of second order accurate. To make it

fourth order, the scheme and the source function is
written as

(-,D,> =@, D’ +cD, +dD, + ED,D,

(20)

(21)
+GD,*D, + HD,’D, + KD,*D;* Ju; = F;

p
F=af,+ef e fin;vefa,
tdif i a+dof +dsf atdif

where the coefficients ¢, and d,, i=1, 2,3&4
are given by

¢ = %—3,5:3 +,b’f -0.54, +3,3X2},X -pBy. +0.25y ,
2 2
CZ = E—Zﬂx +2ﬂx}/\ ,
¢ = %+3ﬂf + B2 4058 ~3B2y.— By —025y.
1
dl = g—3ﬂy3 +ﬂy2 _O,Sﬂy +3ﬂy27y _,By}/y +0.257/y ’

2
d, = 5_2/3; +28,7,,

1
d, = E+3,3y3 + ﬁyz +0.58, —3ﬂy27y -pB,r,—025y,,
d, = h(—6,6y3 -0.5y, +6,6'_V2yy) ,
_a _a _ ah _ ak
- ;T T __ya-nd ;T T
P Pma "k
for ¢ and d notequal to zero

Copyright © 2011 SciRes.

1 5 1
and CIZE’ CZZE’ CBZEv C4:01 d]_:_u

1

dZ:E, dy=—, d;,=0 when ¢=d=0.
6 12

Similarly, for the other selection of source functions
remainder terms are utilized to get fourth order accuracy.
For every scheme E, G, H and K are same as in
(20) but K,, K,, L and L, varieswith the scheme.

3.1.2. Scheme S
Fo=fi+a(f)i, ta(f); +e(f)i,
+ dl(f_v)i,j—l +d, (f})y +d, (f_v),-,,-+1
K =c+c,+¢;, K, = h(c;—¢y),
L =d, +d,+d,, L, = k(d,~d)

Let (22)

The coefficients in the discrete source function are
given by

B +B%-058%——

_ Gﬂx ﬁ.\ ﬂx 12
¢ =h 1 '
-~y —B% +058

27 By, By,

2 5
CZ = h(gﬁx _Zﬂx3 _E}/x +2ﬂx2}/xj '

—p.+B°+058° +—
Gﬂx ﬁ,\ ﬂx 12

1 2
——y —B% 05
7 By, By,
1

l 3 2
gﬁy +ﬁy —O.Sﬂy —E

1
_E7y _'B,vzyy +0'5ﬂyy,v

2 5
dy = k(gﬂy -2p; YL +2,5'y27ij

1 1
gﬂy +B°+058° T
dy =k )
gl P08k,

for c=d#0 and clz_—h, ¢, =0, c3:i,
24 24

k

d=—, d, =0, d3:i when ¢=d=0.
24 24

3.1.3. Scheme ST
F;'/ = fz/ +cl(f;:)[j +¢, (fxx);j +¢; (f‘co:)[j

Let +d1(fy)l./. +d2(f}y)i/. +d3(fm)i/‘ (23)
K =¢, K,=¢, Ly =d,, L, =d,,
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The coefficients in the discrete source function are
given by

a=h(B.~7.). ¢ :hz[%wf—ﬂxnj,

1 = p—
_Ej/xj' dl _k(ﬁy 7y)!

C3:h3[ﬂ,§+%ﬁx_ﬁx27x
— 1,2 1 2
d, =k [E—"_ﬂy_ﬂy}/yj’
— 71,3 3 1 2 1
dy =k (ﬂﬁgﬂy—ﬂm—ﬁn
h2
for cand d notequal to zeroand ¢, =0, CZ:E’

2
c;=0, 4,=0, 4, :11€—2, d;=0 when ¢=d=0.
3.1.4. Scheme S
F=af ., tef,tefi;
+o, (f)i 6 (o) +dufin,; +do f;
Let +d3fi+1,j +d4 (f}), + ds (f}}), _fij (24)

2
K =c,+h(c;—¢q) K, = ¢ +h7(c3 +¢),

k2
L =d,+k(d,-d,), L, =d, +7(d3 +d,),

The coefficients in the discrete source function are
given by

~B.(05+y)+(0.1+0.257,) '

c, =248 +24%y —AB*+2B.y +0.8,

¢ =128 +36}(1-4y,) + BZ(2-3y,)
+p.(0.5-y.)+(0.1-0.25y )

¢, =~h(BF° 6477, +057,),

¢ = —h? (12@4 ~128% .+ —%) ,

d, =12 -38°(L+4y,)+ B2 (2+3y,)
~B,(05+7,)+(0.1+0.25¢,)

d, =240 + 248y, —AB:+2B,y,+08,

dy =128} +382(1-4y ) + B> (2-3y,)
+8,(0.5-7,)+(0.1-0.25y,) ,

d, =—k(6/° —6f%, +05y,),

1
dy = -k [12@3 —128}y, + B _Ej

Copyright © 2011 SciRes.

for ¢ and 4 notequal to zero and clzi, CZZE,
30 15
1 " 1 14
=—, =0, =—, d =—, =—,
“T30 T ST BT s
1 k?

dy=—, d;, =0, dg=— when ¢=d=0.
30 20

These four different schemes 3.1.1.-3.1.4. are
compared with the existing ECHO schemes given in [2]
and [3].

2D Scheme in [2] :
F;. = le;—l,j + czf,"j + 63/{1'4—1,]
+ dljff—l,‘/' + deé/' +d, i+, i

2

h
Let K =h(c;—¢), K, = 7(03 +¢), (25)

k2
L=kl d). 1, =5 (e a),

The coefficients in the discrete source function are
given by

6= B -7 )B-08), & =2-2p.(5. 1),
&= H(A 7B +08),
4=+ (8, =7 ), ~05), dy=2-28,(5,-7),

4y =Z+(B.-1.)(, +08)

for ¢ and 4 notequal to zero and clzl—, c2=g,
c3:i, dlzi, dZ:E’ d3:i when
12 12 6 12
c=d=0

2D Scheme in [3] :
Eo= 1 ralf); +elfu:,
Let +dy(f,),; +d,(f,) 15 (26)
K =¢,K,=¢c,, L =d, L,=d,,
The coefficients in the discrete source function are
given by
¢ =h(B.~r), ¢ =h*05+L.(B.~7.),
dy=h(B,~7.), dy =h*(05+p.(B.~7.)
h2

for ¢ and 4 notequaltozeroand ¢, =0, ¢, :E'
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2

d, =0, d2=f—2 when ¢=d=0.

3.2. Comparison of the Characteristic Surfaces

The characteristic surface of a differential equation is

: . h
obtained in terms of peclet numbers px=c— and
a

:ﬁ, in x— and y— directions, respectively.
a

The characteristic of the governing Equation (1),

Py

1(wxx+wyy)

obtained by substituting e in the place of the
dependent variable u, is given by:

& 0
pen=¢d 1 r? += |+1| p, 22 (@27)
a p.p, r

where 6, =wh, 6 =wk are phase angles and w,_,
w, are the wave numbers h and k are step Iengths
and I=+-1. Similarly, the characteristic surface of
any difference scheme is also obtained by substituting

et gor u, in the difference scheme. Following
this procedure, the characteristic surfaces of the 2D
schemes SP” to SP*”1 are computed and the same are
given by

Characteristic Surface for s™:

/lfDZCd 1 (z+1Iz 28)
a p.np, zy+ 1z,

z = 2ry,(1-cosé,) +2%(1— cos6,)

—[ Py (l—yh)+p*r(1—;/h)Jsin49x~sin6’v ;
» :

x ¥y

2

A7 r L acese, ~2)(2c0s6, - 2)
mp? p, 6 r6

. Dy .
z, = p,rsing, +7"S|n 0, +

[L(l—n)Jr%—l_—y”Jsin 0,(2cos0,-2)+ ;
p

y pxr
[p} (1- 7h)+———(1 yk)J(Zcose -2)siné,
rp: 6 y

23 = (p + & —1) + (145 + 14) COS O, +(&; + ‘fl)cosgy )
2, = (s — 14)sIN G, + (&5 — &) sin 0, + 1,0, +&,0,
where

_px px _py p}
——Coth—, ——Coth—,
Yy 2 T 2

Copyright © 2011 SciRes.

_1 3(- 7h) 1- 7,,_2—7,, _2 21-y,)
6 p p: 4p. P 3 pr
_1 3(1 7h) 1- 7h 2-y,
T8 o B ap
G AN/
) . 2p,
Similarly,
1 3(1 7k) 1- 7k 2=, 2 2(1 7k)
&= s G
6 P, 4Py Py
1 3(1 v.) 1- 7/ 2—
£ = E (2 ko Vi ’
6 )2 P 4py
_ 6(1_7k) 7/k
G
P, 2p,

The terms z; and z, in the denominator of (28) are
the contributions due to the source function of the
scheme and hence vary from scheme to scheme.
However, the numerator of all the exponential schemes
are same as in (28). To justify this, one can expand X,
K,, L and L, with their parameters for every
scheme and in each case they appear like

—_— 2 —_—

K, = a Cah K, :% a(aczah) |
2 —

a, L :%+b(bd2ak) .

Therefore, the characteristics of the schemes are differ
by their denominator which contains the contribution of
the source function of the scheme. The characteristic
surfaces of the remaining three schemes are

Characteristic Surface for SI'™:
/,{Q[ZD] — Cd 1 Zl+IZZ (29)
a p.p,\z+lz,
23 = 1= (s — 140, 5in 6, — (& — §)6, c0s 6, ,
24 = 10, + 5,0, + (15 + 14)0, c0s 0, +(&; + )0, c0s 0, ,
- 1_7/h _1_7/11 + 2_7h _i
pi 2p! 12p, 12°
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1-y, 1=y, 2-y, 1
g = 3k n 2k n kgt
r, 2p, 12p, 12

Characteristic Surface for s

420 = cd 1 (z+Iz (30)
a pp\z+lz,
z=1- ,Uz‘gf - 52‘92 =0, + 519 - /1303 - 53‘93
1-y, 1 1 y,, 1- n, 2-y,
=—" , + y
A T T T Ty,
1-y 1 1- }/ 1- }/ 2 7,
&= £ v & = _+ : v &= ‘ ‘£,
p, P’ P 12py

Characteristic Surface for ™ :

I
ﬂszﬂ 1 [zl+ ZZJ (31)
a p.p,\z+lz,

23 = (t + & —1) + (15 + ) COS G,
+(&+&)cosl, — 0! - 507
2, = (g = )siN O, + (& —&)sin0, + 14,0, +&,0,,
_12(1-y,) 3Q- 7,,) 2— 7,1_2—7,,+i

px px p’( 4p" 10
_£_24(1_7/h)_2(2_7/h)
2= 5 ps pz !
12(1 7h) 3(1 7h) 2- 7h +2 Vi +l
3~ 3 !
pr px px 4px 10
C6(L-7) 7 12Q-y) 1 1.
4~ 3 2 J 5 = 4 2 15’
py Py P Dy
&= 12(1 7k) 3(1 7k) 2- 7k _2_7k +i
1 1
p1 p} Py 4py 10
4 24(1-y) 22- n)
S =
5 pv py
£ = 12(1- 7k) 3(1- 7/k) 2- 7’k 2=y +i
3 1
p} py py 4py 10
6(1-7) 7 120-y) 1 1.
f= T g = Y
py 2py py p)’ 15

Similarly, the characteristics of the schemes in [2] and
[3] are derived and given by
Characteristic Surface for Scheme [2]:

ﬂ/[z] — ﬁ 1 Zl+iZZ (32)
a p.p,\Z +iz,
23 = (p + & =1) + (145 + 14) €08 O, + (&3 + &) c0s b,
2, = (43— w)sin G, +(&; - &) sin 0,,

Copyright © 2011 SciRes.

1-y, 1 1-y,
= I —+ )
B ‘6 p
1-y 1 1-y
51 = . ' GEZ ==+ zk
D, 6 p
Characteristic Surface for Scheme [3]:
/1[3] Cd l Zl +iZZ (33)
a p.p, zy tiz,
2, =1- 1,07 _5205124 = wb, +60,,
le_ﬂ _1 1=y
p, 6 pl
1-y 1 1 7/
&= L v &= L.
P, 6 2

The characteristic surfaces defined in (28-31) are
symmetric or antisymmetric in the region [0, —=n]x
[0, —x] depending on whether A" is an even or odd
function of p_ and p . Further they are also periodic
with period 27z . These surfaces AP”!, with respect to
0<p ,<m and 0<p, <m, can be plotted together for
the shake of comparison, however, unlike in one
dimensional case, it is difficult to visualize the closeness
of these surfaces. Alternatively, comparisons are made at
different angular cross sections from the origin. Further,
if p,=p,, they are also symmetric with respect to 45°
curve, therefore, in the present case, the values of the
characteristics are compared at 15°, 30° and 45° cross
sections.

The characteristics at the three chosen cross sections
are plotted against the exact one in Figures 4 and 5 for
p.=p,=10 and p =p, =100, respectively. The
comparisons of the real parts of the characteristics are
included in the first column of these figures, while the
comparisons of the imaginary parts are shown in the
second column. The three rows in these figures stand for
the comparisons at 15°, 30° and 45° cross sections,
respectively.

It can be seen clearly in each of these figures that the
characteristics of the existing three parameter 2D
schemes are far away from the exact curve compared to
the four parameter schemes which have been developed
in this work. Interestingly, the deviation is increased with
angle and also with peclet number giving a very
substantial deviation at p, =p, =100 . Particularly,
Scheme in [2] is deviated more at the center and also
produced a significant overshoot for all most all the cross
sections.

Among the present four parameter based fourth order
2D schemes, S¥”' produced minimum and SP”!
produced maximum dissipation errors. However, when
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Figure 4. Comparison of the (a) real and (b) imaginary parts of the characteristic at p =p, =10.

in its real part is also been observed in SP”! at least
along 15° cross section. For the imaginary parts, SP”!

the peclet number is increased to 100, SP*”!' overshot
has the minimum and S¥”' has the high deviation

the exact characteristic in its real part but there is no such
abnormality with respect to S¥”!. A similar overshoot

Copyright © 2011 SciRes. AJCM
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Figure 5. Comparison of the (a) real and (b) imaginary parts of the characteristicat p, = p, =100.
parameter based schemes are indistinguishable and these
are better resolved for real case as comparable to S
and almost close to  S?”! for imaginary case.

giving little more dispersion error. To conclude, SP*”!
AJCM

may be relative a better one among the developed four
both five and six

parameter schemes. However,
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Table 6. Comparison of the error norm and rate of convergence for the example 3.3.1.

(p..p,) Scheme[4] Rate e

Rate

Sen Rate S Rate SP Rate

11X11  (2,1) 3.2758(—05) 3.3534(—05)

10" 21X21  (1,1/2) 2.1086(—06) 3.98 2.1208(—06)

41X 41 (1/2,1/4) 1.3299(—07) 3.99 1.3317(-07)

81X 81 (1/4,1/2) 8.3358(—09) 4.00 8.3364(—09)

11X11  (20,10) 1.0280(—01) 8.2609(—02)

102 21X21  (10,5) 5.9942(—03) 4.10 9.3313(—03)

41X41  (5,5/2) 1.7187(—04) 5.12 3.5268(—04)

81X 8L (5/2,5/4) 2.9582(—06) 5.86 6.5424(—06)

11X11 (200,100) 2.9329(01) 1.2625(—00)

10°  21Xx21 (100,50) 6.7439(00) 212 6.2716(~01)

41X41 (50,25) 1.3939(00) 2.27 3.0705(—01)

81X 81 (25,25/2) 2.1120(-01) 2.72 1.2556(—01)

161X 161 (25/2,25/4) 1.6135(-02) 3.71

2.0981(—02)

321X 321 (25/4,25/8) 5.7798(—04) 4.80  1.0951(—03)

3.98

3.99

3.99

2.48

4.73

5.75

1.00

1.03

1.29

2.58

4.26

1.0116(—04) 2.4911(-04) 7.5792(-05)

6.4702(—06) 4.0 15813(-05) 3.98 4.6762(-06) 4.20

4.0445(-07) 40 9.8422(-07) 401 2.9358(-07) 3.99

25290(~08) 4.0 6.1618(-08) 4.00 1.8314(-08) 4.00

6.3122(—02) 8.4654(-01) 1.7722(-01)

2.7119(—02) 122 1.3763(-01) 2.62 4.2111(-02) 2.07

3.3219(—03) 3.03 1.3880(-02) 3.31 4.9041(-03) 3.10

2.2380(—04) 3.89 9.0323(-04) 3.94 3.3340(-04) 3.88

2.0891(—04) 1.0339(02) 2.1052(-00)

2.8535(—05) 2.87 25296(01) 2.03 1.0482(-00) 1.00

2.3053(—03) —6.34 6.0623(00) 2.06 5.1798(-01) 1.02

5.2316(~02) —-450 1.3821(00) 2.13 2.3966(-01) 1.11

41933(—02) 032 2.5399(-01) 244 7.1006(-02) 1.76

6.9254(—03) 2.60 29998(-02) 308 1.0272(-02) 2.79

3.3. Numerical Verification

Consider the following two-dimensional problems with
sharp boundary layers.

3.3.1. Example
—Eu, —&u, +2u, +u, =
£ 1

1 1
’ g(hljy(“y)[‘g ]—ey**(1+2g), 0<e<<l1,
&

inthe region 0<x, y<1 with exact solution

L 1t
ulx,y)=e""+2 (1+y) .
3.3.2. Example

su, +eu, +u, +u, =(1-2y) exp(%xj , O0<e<<l,

inthe region 0<x, y <1 with exact solution

Copyright © 2011 SciRes.

u(x,y) = (y(1-y)- ng)exp (?xj )
The example problems (3.3.1.) and (3.3.2.) are solved
using SP” to SP”! and also with the scheme given in
[4]. The results are compared, in the form of error norm
and the rate of convergence, in Tables 6 and 7, for
problems (3.3.1.) and (3.3.2.), respectively. As expected,
the scheme given in [4] and the scheme SP”? produced
higher rate of convergence for Example 3.3.1. and better
accuracy for Example 3.3.2.. These comparisons are
once again confirm the accuracy of the characteristic
analysis made in the previous subsection.

For convection dominated problems all most all the
schemes produced same accuracy however, it has been
shown in [4] that the scheme given in [4] has performed
better than the schemes given [2] and [3]. Looking at the
characteristic analysis and numerical verification, it can
be concluded that it is better to use n parameter based 2D
schemes to develop »” order schemes, over schemes
with less parameters.
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Table 7. Comparison of the error norm and rate of convergence for the example 3.3.2.
& N (p.. p,) Scheme[4] Rate SEr Rate Skl Rate Skl Rate Skl Rate
11X 11 (1,1)  2.2658(-04) 2.2675(-04) 1.8741(-04) 3.9867(-04) 2.9060(-04)

10" 21X21  (U2,1/2) 1.4046(-05) 4.00 1.4048(-05) 4.00 1.1519(-05) 4.02 2.4501(-05) 4.02 1.7917(-05) 4.02
41X 41 (14, 1/4) 8.7539(-07) 4.00 8.7542(-07) 4.00 7.1382(-07) 4.01 1.5323(-06) 4.00 1.1212(-06) 4.00
81X81 (1/8,1/8) 55187(-08) 3.99 55187(-08) 3.99 4.4908(-08) 3.99 9.6631(-08) 3.99 7.0682(-08) 3.9
11X11  (10,10) 9.6530(-03) 1.2891(-02) 1.4054(-02) 3.6026(-02) 1.6494(-02)

102 21X21 (55) 4.6367(-03) 1.06 4.9883(-03) 1.37 5.0340(-03) 1.48 1.1336(-02) 1.67 6.8089(-03) 1.28
41X 41 (5/2,5/2) 9.4892(-04) 229 9.5928(-04) 2.38 8.1280(-04) 2.63 2.0086(-03) 250 1.3281(-03) 2.36
81X 81  (5/4,5/4) 9.0223(-05) 3.39 9.0385(-05) 3.40 6.9922(-05) 3.54 1.8443(-04) 345 1.2511(-04) 3.41
11X 11  (100,100) 5.7441(-02) 1.8322(-02) 1.9735(-02) 2.7883(-01) 2.2093(-02)

10° 21X21  (50,50) 1.0511(-02) 2.45 1.0879(-02) 0.75 1.1782(-02) 0.74 8.8185(-02) -1.66 1.3292(-02) 0.73
41X41  (2525) 6.6370(-04) 3.99 5.8353(-03) 0.90 6.3558(-03) 0.89 2.7366(-02) 1.69 7.2365(-03) 0.88
81X 81 (25/2,25/2) 1.6570(-03) -1.32 2.6765(-03) 1.12 2.9415(-03) 1.11 8.1345(-03) 1.75 3.4111(-03) 1.08

161X 161 (25/4, 25/4) 8.5246(-04) 0.99 9.6240(-04) 1.48 1.0164(-03) 1.53 2.2469(-03) 1.86 1.2841(-03) 1.41
321X 321 (25/8,25/8) 2.0814(-04) 2.03 2.1228(-04) 2.18 1.8988(-04) 2.42 4.4575(-04) 2.33 2.9124(-04) 2.14

4. Conclusions

In this work we have developed and made characteristics
based comparisons for exponential compact schemes.
The characteristic comparisons are also been extended
for two dimensional problems. It can be concluded from
this short analysis that when exponential compact higher
order schemes are generated by evaluating the source
term as a linear combination of its values at the
surrounding nodal points and its derivatives, it is better
to use n parameters to generate an n” order scheme
so that the resultant scheme will have a better resolution
and hence can produce more accurate solutions. For the
same reason, the fourth order ECHO schemes developed
in this work are more accurate than the existing schemes
[2,3]. The same is also true when the ECHO schemes are
extended for 2D CDE, the corresponding three parameter
schemes are comparatively less efficient than the four or
six parameter based schemes.

Copyright © 2011 SciRes.
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