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Abstract 

Stochastic two-stage linear optimization is an important and widely used optimization model. Efficiency of 
numerical integration of the second stage value function is critical. However, the second stage value function 
is piecewise linear convex, which imposes challenges for applying the modern efficient spare grid method. In 
this paper, we prove the first order convergence rate of the sparse grid method for this important stochastic 
optimization model, utilizing convexity analysis and measure theory. The result is two-folded: it establishes 
a theoretical foundation for applying the sparse grid method in stochastic programming, and extends the 
convergence theory of sparse grid integration method to piecewise linear and convex functions. 
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1. Introduction 

Stochastic two-stage linear optimization, also called sto-
chastic two-stage linear programming, models a sequen-
tial decision structure, where the first stage decisions are 
made now before the random variable manifests itself; 
and the second stage decisions are made adaptively to the 
realized random variable and the first stage decisions. 
The adaptive decision model has been applied many im-
portant application areas. For example, in the introduc-
tory farmer’s problem [1], a farmer needs to divide the 
land for different vegetables in spring. The farmer’s ob-
jective is to maximize profit in the harvest season. The 
profit is related to the market price at that time and the 
weather dependent yield. Neither the price nor the 
weather is known at the present time, hence the farmer’s 
decision in spring has to take into account multiple sce-
narios. It is not a simple forecasting problem though, 
since the farmer’s second stage decision in fall, which 
adapts to different scenarios, also jointly determines the 
profit. The second stage decision problem is also called 
“recourse” problem. [2] collects more recent applications 
in engineering, manufacture, finance, transportation, tele- 
communication et al. 

A stochastic two-stage linear problem with recourse 
has the following general representation: 
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where   is a random vector properly defined on 
 P, ,  , X  is a polytope feasible region for the first 
stage, m nQ  , s and  are a vector and a matrix of 
proper sizes, 

T
  : , ,X        is a real valued 

function. 
The high dimensional integration in (1) is difficult and 

is usually approximated by using a set of scenarios and 
weights  , , 1, ,k kw k K  

K
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Under this scenario approximation, the optimal objec-
tive value *

Kz  of (2) provides an approximation of the 
optimal objective value  of (1). An optimal solution *z

*
Kx  of (2) provides an approximation of an optimal solu-

tion *x  of (1). 
Monte Carlo (MC) method has been widely used in 

this approximation, where  are random  , = 1, ,k k  K
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sampling points and = 1kw K . The convergence theory 
of Monte Carlo method has been extensively studied 
[3-6]. The core result is the epi-convergent theorem: un-
der mild assumptions, *

Kz  converges to  w.p.1 as 
; and any clustering point of the =1 , which 

is the sequence of optimal solutions to (2), is in the op-
timal solution set of the original problem. Quasi Monte- 
Carlo (QMC) method has also been recently studied [7], 
and similar convergence result has been achieved. 

*z
*{ }K Kx K 

The sparse grid (SP) method is an established high 
dimensional quadrature rule, which was originally pro-
posed by Smolyak [8], and has been studied by many 
authors in the context of numerical integration [9] (and 
references therein). Its application in the stochastic two- 
stage linear optimization is only shown in a recent nu- 
merical study in [10]. Though [10] shows the superior 
numerical performance of sparse grid method, compared 
with both MC and QMC, the convergence analysis is 
based on an assumption that the recourse function is in a 
Sobolev space, which only holds for a very narrow sub- 
set of the two-stage linear problems, i.e., separable prob- 
lems. The contribution of this paper are 1) establishing 
the epi-convergence of the sparse grid method for this 
important decision model; 2) prove the first order con- 
vergence rate of the method. 

We first introduce the spare grid approximation error 
for integrand functions in Sobolev spaces. 

Let jD  denote the partial derivative operator  
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. The Sobolev space with smooth- 

ness parameter  is defined as  1r 

  2: 0,1 for all ,
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where r   means component-wisely ,j r   

1, ,j   d . Sobolev spaces could also be defined using 

p  norms, see Evans [11]. The derivatives in the defini-
tion of Sobolev space are weak derivatives. Formally,  

D f  is the  -derivative of f if for all ,   0 0,1
d

v C

i.e., infinitely differentiable function on ,   0,1
d

D f

satisfies the following equation: 
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For example,   =f x x  defined in  0,1  has the 
first order weak derivative function  Df xsign ; but 
the function is nondifferentiable at 0 in the usual strong 
sense. It has been shown that weak derivative is essen-
tially unique, and coincides with the classical strong de-
rivative when it exists. Various properties of strong de-
rivatives carry over to weak derivative as well, for ex-
ample,   D f D D f D       D f  for all multi- 
index , , r     . For more calculus rules regard-
ing weak derivative, including the extended Leibniz 
theorem, see Evans ([11], Section 5.2.3). 

The norm of the defined Sobolev space is  
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For , the sparse grid method achieves the fol-
lowing convergence rate [12]:  
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where K  is the number of function evaluations, ,r d  
is a constant independent of f , increasing with both d 
and , see Brass [13]. Note that  implies  r r

df 
,i

df i r  . Since the norm r
d

f  and ,d r  are non-  


decreasing in r , and the term    1 1
ln

d rrK K
   is 

non-increasing in  for large , it is none trivial to 
tell which space will yield the tightest bound. The prob-
lem is called fat 

r K

F  problem in Wonzniakowski [14]. In 
this paper, as we shall see, only  is relevant for our 
discussion. 

= 1r

The convergence result in (3) only holds for the two- 
stage stochastic linear programming (1) in the trivial case, 
i.e., when the integrand function  is 
separable. For example, 

 , :x    
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11 1 1=y y x    

2 2 2= 2y y x    

1 1 2 2, , , 0y y y y      

is equivalent to  

 1 2 1 2 1 1 2 2, , , ,x x x        x  

where 1
1 1 1x   , 1

2 2 1x    and the conver-
gence result in (3) can be applied directly. 

However, in general,  ,x   is non-separable piece-
wise function, see Birge and Louveaux [1], and does not 
belong to  for any . For example, r

d r

 1 2 1 2
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nd in (3) can not be 
applied to two-stage linear problem directly. The major 
contribution of this paper is to prove the convergence of 
(2) to (1) in the rate specified in (3) with = 1r , i.e., the 
first order conver e rate, even though   1, dx   . 
On the other hand,  extends the convergence 
theory of sparse grid method to convex multivariate 
piecewise linear functions since for such a function 
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The paper is organized as the followings. In Section 2, 
we introduce a logarithmic mollifier function and prove 
its various properties. The mollifier function is quite fa-
miliar to the optimization community as it is the barrier 
function used in the Interior Point Method for linear pro-
gramming. In Section 3, we use the limiting properties of 
the mollifier function to prove the uniform convergence 
and the first order convergence rate for the objective 
function. We also show the converging behaviour of the 
optimal solutions *

Kx  in a subsequence. Finally, Section 
4 presents our conc ions. 

In the coming sections, we a
lus

ssume . For a 
m

 = 0,1
d

ith a inveore general continuous distribution w rse cu-

mulative function  1 : 0,1
d

F   , one can apply trans- 
formation 
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tion in the Appendix. 

alysis thro
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A3:   =rank Q m ;  
A4:   is a conti us random vnuo ector with an in-

ve  cu
ysis using the 

In

rtible mulative distribution function.  
Assumption A1 is necessary for our anal
terior Point Method theory. Assumption A2 is for 

convenience since otherwise we need to discuss the case 
 , =x   , which will drag our analysis to a different 

ption A3 is implicitly assumed in many 
analysis of linear programming, since the rows of Q  
could be preprocessed such that the reduced Q  has fu  
row rank. Assumption A4 facilitates the conversion from  
a unit cube 

focus. Assum
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is in fact a barrier function widely used in the ( )B y  
Interior Point Method for linear programming, and its 
properties are well studied. As 0  , the convergence 
of  ,x   and  * *

, ,,x xy u   i in the following 
theo

Theore

s stated 
rem. 

m 2.1. For any 1  let  , 0,x X   ,  * *
, ,,x xy u   

e mollifierbe the optimal primal and of th   dual solutions 1We thank John Birge for pointing out this elegant argument. 
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function, then  
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where  * *,x xy u  
unctio

is an optimal primal and dual pair of the 
recourse f n  ,x  . 

Proof. Due to th r functioe barrie n , the objective 
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( )B 
nction of  ,x   is strictly conv Together with 

the relative c eness assumption, it is clear that 
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   has an unique optimal solution. Since the pro- 
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 exists for each x , and con- 
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 property of 

Roos et al. [15] Theorem I.30 and its Definition I.20 for 
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The converging  * *
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tant topic in
 (central path) 

as 

ap-
pe

where . Clearly 

0   has been an impor  Interior Point 
Me d has been extensive studied by many authors. 
For interested readers, in addition to the reference given 
in the proof, we refer the extensive research in Megiddo 
[16], an early work Fiacco [17], and a survey of degen-
eracy and IPM by Güler et al. [18]. For readers interested 
in the interior point method in general, we refer Nesterov 
and Nemirovskii [19], Renegar [20] and Wright [21]. 
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where I  is an identity matrix,   ,, xy u F  is invertible 
since ( )H   is positive definite.  the implicit 
functio eorem, * *
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Hence by
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e last equality follows the KKT condition. 
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the relativ mpleteness assumption,e co  Kx  is feasible. 
To ow t sh hat Kx  is also very close to a mal solu-
tio m 
3.1. 

ny opti
n, we apply the similar technique used in Theore

           * *
K K K K Kz x z x z x z x    

 
 2 , 2 ,K K  

since 

=Kz x z x 

   K K K K Kz x z x       by Theorem 3.1, and  

   *
K K Kz x z x      by the steps in the proof of  

Theo *x  is a clustering point,  rem 3.3. Since 

       * * * 0limt Kt
z x z x z x z x      by the ine- 

quality above. As a special case, if  *=X x , then 
* *=x x . 

 tThe .3 is a classical result hird result of Theorem 3
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based the uniform conve
bsequ al sets are 
eto , and on xpect op-

timality of clustering points. The result
h [23,24

onverg c nvergenc
K

he sparse grid method for the stoch -
mming not only converges but

 order rate. Our constructive proof

 Mathematics, Philadelphia, 2005. 

 R. J.-B Wets, “Epi-Convergency of Con- 
 Programs,” Stochastic and Stochastic Re-

ports, Vol. 34, 1991, pp. 83-92. 

chastic Pro- 

rgence, see Römisch [22]. The 
result is stated in su ence since the optim
not necessarily singl ns e can only e

 can also be 
proved by epi-convergence, see Attouc ]. Epi- 
c en e is implied by uniform co e, see 

all [25]. 

4. Conclusions 

The modern sparse grid method is very efficient in nu-
merical integration for integrant functions the Sobolev 
space r

d . However, the integrand function in two- 
stage linear programming does not belong to r . We 
prove that 

d
astic twot  

stage linear progra
converges in the first

 also 
 

uses a logarithmic mollifier function from interior point 
method. 
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tion and 

or a random vector on with invertible cumulative 
ion 
om 

 
Appendix A. Inverse Transforma
Truncation 

F   
distribution function  1 : 0,1

d
F    , the integrat

domain of a mollifier function can be transformed fr
  to  0,1

d
:  

      1
, ,d = d ,x xF F [0,1]d

     

   

then we apply the sparse grid method to generate scenar- 
s and weights io for on the cube . We need to 

check the properties of the integrand   
. Its differentiability only depends on

  0,1
d

 function
 1

,x F
   1( )F    

since , ( )x C
  . Most commonly used invertible cu-

mulative distribution functions, for e ple, inverse of 
normal distribution function  1  , is also in C

xam
 . The 

finiteness of the partial derivatives of  1
,x F

 
only d 

 also 
epends on 1F    since partial derivatives of 

 ,x   are finite for any multi-index 1   compo-
nent-wisely. 

The higher order partial derivative of a posite 
function can be calculated explicitly. For  

: f gh x X y Y z         , we can ap-
ply the Faà di Bruno’s formula:  

 com

                
n

d
= = ,

d

n
n P B

n
P B P

f g x f g x f g x g x
x 

   


where n  is the set of all partit



ions of the set nJ  of 
intege . A partition of rs 1, , n nJ  

s of 
is a family o ir-

wise di nempty subset
f pa

sjoint no nJ  whose un  ision  

nJ . A  means the cardinality of the set A . For a vec-
p

rm

tor com site function:  

: ,f gh y Y z         

We apply Tsoy-Wo Ma’s higher chain fo ula [26]:  

o

x X 

 , , =1

1 1
= !

! !

mkpm s k

m pk
s p m k k k

z  z y

m px y x 


 
 

    
 



 

w  here   is the set of all decompositions of multi-index
  with multiplicities Calculation involving a multi- 

x 
m . 

inde  1, , 
      follows rules:  

=1 =1

= , != !,

= .

j j
j j

jz

=1 =1

= ,j
j

j j j

x x z
xx



   
 

A multi-index 







    
 

   decomposes into s  parts 

1, , sp p  in   with multiplicities 1, , sm m  in   
respectively if the decomposition equation  

1 1 2 2= s sm p m p m p     

holds and all parts are different. The total multiplicity is 
defined as  

1 2= .sm m m m    

The list  , ,s p m ed a  is call  -decomposition of  . 
nsure all parts are different we may impose 

1 20
To e

sp p p   , where       
means = , , =1 1 1j j j     , but <j j  , for a 
j  . 

For the problem under discussion, let 1   compo-
nent-wisely, i.e., = 1r , note that are 2 1d   number of 
such   (s). Fol g the higher c  formula, 
we get  

lowin hain rule

 

 
 

1
,

1 1
= .

x

k

F


  





 
 


 

,
!

mpm s k

xm pk
 

 
 
 

ce 

, , =1 ! !s p m k k km p   

Furthermore, sin 2
0 ,m x    by Proposi-  

tion 2.3, the computation of 

 = 0li  

 1F


0 ,lim x   


  
 



can be simplified significantly. In this case, only the de-
compositions  1, , ie , 

-zeros in the 
ie  is the th unit basis of  cor- 

respond to non ula. Otherwise, for  
i

above form

d ,

, 1= sm m m  , and  0 , = 0lim
m

xm  






. 2s 

Hence  

   ,

0 0 =1
im

d
x i

i i w


1

, =lim lx iF

*
,

=1

= .
d

i
i i x

i

u
w



 
 

  





 




 




 
 

 
 

 



 

Hence, 

 1 *
, ,1

0

= <
d

x i
 




=1
2 1 2

,lim i
i x

d i

F u



 

  






  
 
 




if and only if 

  

<i











 almost surely  

1, = 1, ,i d    . For some distributions, the condi-
tion might not hold. For example, the inverse of a cumu-
lative function of the normal distribution does not have 
this property nearby 0 or 1. To remove the singularities, 
truncation of the cube [0, 1] could be applied:  

where 

     d0,1 ,1
( )d d ,dh x x h x x

 
   

0 < < 1  
han

 we need t

is a small positive number. To com-
d side rd sparse grid 

method, o change the variable to , where 
pute the right  using the standa

 y
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  = 1 2 : 0x y   ,1 ,1
d d  

1

   . Hence  

          
,1 0,1

d = 1 2 1 2 d .
d

d dh x x h y y
 

  


     

Hence for a two-stage linear problem with an invert-
ible but unbounded cumulative distribution function 
F  , we shall first generate the standa

weights   ,

    1= 1 2 , = 1 2 ,
dk k k kF w w         

finally use the and  ,k kw   in the approximation 
model (2)

The er proximation model is exactly the 
. 
ror of this ap

sum of truncation error te , and sparse grid approxima-
tion error se . Errord grid points and  

=1

K
k kw  using the sp

k
arse grid method, 

then scale and transform them to the original random 
variable   by  

r goes down with te    and error 

se  goes do  w ng wn ith increasi K  at der rate 
sparse g ethod. 

the first or
of rid m
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