

Search or

arXiv.org > math > arXiv:1107.4943

Mathematics > Probability

Positivity of integrated random walks

Vladislav Vysotsky

(Submitted on 25 Jul 2011 (v1), last revised 16 Mar 2012 (this version, v2))

Take a centered random walk S_n and consider the sequence of its partial sums A_n = S_1 + ... + S_n. Suppose S_1 is in the domain of normal attraction of an \alpha-stable law with 1 < \alpha <= 2. Assuming that S_1 is either right-exponential (that is $P(S > x | S > 0)=e^{-2}$ for some a > 0 and all x > 0) or right-continuous (skip free), we prove that $p_N = P(A_1 > 0, ..., A_N > 0) \sim C_{alpha} N^{1/(2alpha)} - 1/2$ as N tends to infinity, where C_\alpha > 0 depends on the distribution of the walk. We also consider a conditional version of this problem and study positivity of integrated discrete bridges.

Subjects: Probability (math.PR)

MSC classes: 60G50, 60F99 Cite as: arXiv:1107.4943 [math.PR] (or arXiv:1107.4943v2 [math.PR] for this version)

Submission history

From: Vladislav Vysotsky [view email] [v1] Mon, 25 Jul 2011 13:23:01 GMT (20kb) [v2] Fri, 16 Mar 2012 08:56:58 GMT (22kb)

Which authors of this paper are endorsers?

Link back to: arXiv, form interface, contact.

vrticle-id	(<u>Help</u> <u>Advanced search</u>)
	All papers 👻 Go!
))	Download: • PDF • PostScript • Other formats
	Current browse context: math.PR < prev next > new recent 1107
	Change to browse by: math
	References & CitationsNASA ADS
	Bookmark(what is this?)

