Mathematics > Probability

Positivity of integrated random walks

Vladislav Vysotsky
(Submitted on 25 Jul 2011 (v1), last revised 16 Mar 2012 (this version, v2))
Take a centered random walk S_n and consider the sequence of its partial sums A_n = S_1 + ... + S_n. Suppose S_1 is in the domain of normal attraction of an lalpha-stable law with $1<$ lalpha <= 2. Assuming that S_1 is either right-exponential (that is $P(S>x \mid S>0)=e^{\wedge}\{-a x\}$ for some $a>0$ and all x >0) or right-continuous (skip free), we prove that $p _N=P\left(A _1>0, \ldots, A _N>\right.$ $0) \sim$ C_lalpha $N^{\wedge}\{1 /(2$ lalpha) $-1 / 2\}$ as N tends to infinity, where C_lalpha >0 depends on the distribution of the walk. We also consider a conditional version of this problem and study positivity of integrated discrete bridges.

Download:

- PDF
- PostScript
- Other formats

Current browse context: math.PR
< prev | next > new | recent | 1107

Change to browse by: math

References \& Citations

- NASA ADS

Bookmark(what is this?)


```
Scolce
```

Subjects: Probability (math.PR)
MSC classes: 60G50, 60F99
Cite as: arXiv:1107.4943 [math.PR]
(or arXiv:1107.4943v2 [math.PR] for this version)

Submission history

From: Vladislav Vysotsky [view email]
[v1] Mon, 25 Jul 2011 13:23:01 GMT (20kb)
[v2] Fri, 16 Mar 2012 08:56:58 GMT (22kb)
Which authors of this paper are endorsers?

Link back to: arXiv, form interface, contact.

