Mathematics > Statistics Theory

Renorming divergent perpetuities

Paweł Hitczenko, Jacek Wesołowski

(Submitted on 14 Jul 2011)
We consider a sequence of random variables $\$\left(R _n\right) \$$ defined by the recurrence $\$ R _n=Q _n+M _n R _$ \{n-1\}\$, \$nlge1\$, where \$R_0\$ is arbitrary and \$(Q_n,M_n)\$, \$nlge1\$, are i.i.d. copies of a twodimensional random vector $\$(Q, M) \$$, and $\$\left(Q _n, M _n\right) \$$ is independent of $\$ R _\{n-1\} \$$. It is well known that if $\$ E\{\backslash \ n\}|M|<0 \$$ and $\$ E\left\{\backslash \mid n^{\wedge}+\right\}|Q|<$ infty $\$$, then the sequence $\$\left(R _n\right) \$$ converges in distribution to a random variable $\$ R \$$ given by $\$ R \backslash s t a c k r e l\{d\}\{=\} \backslash s u m _\{k=1\}^{\wedge}\{$ linfty $\} Q _k \mid p r o d _\{j=1\}^{\wedge}\{k-1\} M _\$$, and usually referred to as perpetuity. In this paper we consider a situation in which the sequence $\$\left(R _n\right) \$$ itself does not converge. We assume that $\$ \mathrm{E}\{\backslash \mathrm{In}\}|\mathrm{M}| \$$ exists but that it is non-negative and we ask if in this situation the sequence $\$($ R_n $) \$$, after suitable normalization, converges in distribution to a nondegenerate limit.

Comments: Published in at this http URL the Bernoulli (this http URL) by the International Statistical Institute/Bernoulli Society (this http URL)
Subjects: Statistics Theory (math.ST)
Journal reference: Bernoulli 2011, Vol. 17, No. 3, 880-894
DOI: 10.3150/10-BEJ297
Report number: IMS-BEJ-BEJ297
Cite as: arXiv:1107.2753 [math.ST]
(or arXiv:1107.2753v1 [math.ST] for this version)

Download:

- PDF
- PostScript
- Other formats

Current browse cont math.ST
< prev|next >
new | recent | 1107
Change to browse b math
stat
References \& Citatic

- NASA ADS

Bookmark(what is this?)

Submission history

From: Paweł Hitczenko [view email]
[v1] Thu, 14 Jul 2011 08:45:02 GMT (36kb)
Which authors of this paper are endorsers?

Link back to: arXiv, form interface, contact.

