

Mathematics > Statistics Theory

Renorming divergent perpetuities

Paweł Hitczenko, Jacek Wesołowski

(Submitted on 14 Jul 2011)

We consider a sequence of random variables (R_n) defined by the recurrence $R_n=Q_n+M_nR_{n-1}$, $n\geq R_0$ is arbitrary and (Q_n,M_n) , $n\geq 1$, are i.i.d. copies of a twodimensional random vector (Q,M), and (Q_n,M_n) is independent of R_{n-1} . It is well known that if $E_{N}|M|<0$ and $E_{N^+}|Q|<\inf\{0,1,1,1,1\}$, then the sequence (R_n) converges in distribution to a random variable R given by $R \det\{0,1,1,1,1\}$, then the sequence (R_n) , and usually referred to as perpetuity. In this paper we consider a situation in which the sequence (R_n) itself does not converge. We assume that $E_{N}|M|$ exists but that it is non-negative and we ask if in this situation the sequence (R_n) , after suitable normalization, converges in distribution to a nondegenerate limit.

Published in at this http URL the Bernoulli (this http URL) by the International Statistical Institute/Bernoulli Society (this http URL)
Statistics Theory (math.ST)
Bernoulli 2011, Vol. 17, No. 3, 880-894
10.3150/10-BEJ297
IMS-BEJ-BEJ297
arXiv:1107.2753 [math.ST]
(or arXiv:1107.2753v1 [math.ST] for this version)

Submission history

From: Paweł Hitczenko [view email] [v1] Thu, 14 Jul 2011 08:45:02 GMT (36kb)

Which authors of this paper are endorsers?

Link back to: arXiv, form interface, contact.

Search or Article-id

(<u>Help</u> | <u>Advance</u> All papers

Download:

- PDF
- PostScript
- Other formats

Current browse cont math.ST

< prev | next >

new | recent | 1107

Change to browse b

math stat

References & Citatio

Bookmark(what is this?)