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Abstract

Several convex formulation methods have been proposedopsty for statistical estimation with structured sparsits
the prior. These methods often require a carefully tunedilaggation parameter, often a cumbersome or heuristiccese
Furthermore, the estimate that these methods produce mightbelong to the desired sparsity model, albeit accurately
approximating the true parameter. Therefore, greedy-gigerithms could often be more desirable in estimatingcstmed-
sparse parameters. So far, these greedy methods have rfomstbed on linear statistical models. In this paper we stilmy
projected gradient descent with non-convex structuredsgpparameter model as the constraint set. Should thewwsion have
a Stable Model-Restricted Hessian the algorithm convet@éise desired minimizer up to an approximation error. As xamgle
we elaborate on application of the main results to estimaitioGeneralized Linear Models.

|. INTRODUCTION

In a variety of applications such as bioinformatics, meldineaging, social networks, and astronomy there is a growing
demand for computational methods that perform statisiidatence on high-dimensional data. In the problems agigirthese
applications,p, the number of predictors in each sample is much larger thahe number of observations. Although such
problems are generally ill-posed, in many cases the dat&i@sn underlying structure such as sparsity that can beoérgl
to make the problem well-posed.

Beyond the ordinary, extensively studied, sparsity moaelariety of structured sparsity models have been propaséuki
literature [L]-[8]. These sparsity models are designed to capture the imtendience of the locations of the non-zero components
that is knowna priori in certain applications. The models proposed for structsparsity can be divided into two types. Models
of the first type have a combinatorial construction and eipfienforce the permitted “non-zero patterngl],[[ 7], [9]. Greedy
algorithms have been proposed for the least squares remressh true parameters belonging to such combinatorialrsy
models 1], [9]. Models of the second type capture sparsity patterns iediury the convex penalty functions tailored for
specific estimation problems. For example, consistencineal regression with mixef, /¢>-norm regularization in estimation
of group sparse signals having non-overlapping groupsudied in [.]. Furthermore, a different convex penalty to induce
group sparsity with overlapping groups is proposeddh [n [5], using submodular functions and their Lovasz extension,
a more general framework for design of convex penalties ithdtice given sparsity patterns is proposed. 8hd convex
signal model is proposed that is generated by a set of basalsigalled “atoms”. The model can describe not only plait an
structured sparsity, but also low-rank matrices and séwaheer low-dimensional models. We refer readers 16],[[11] for
extensive reviews on the estimation of signals with stngztisparsity.

In addition to linear regression problems under structspatsity assumptions, nonlinear statistical models haea lstudied
in the convex optimization framework], [2], [€], [12]. For example, using the signal model introducedé&h minimization
of a convex function obeying eestricted smoothness propeiit/studied in [ 7] where a coordinate-descent type of algorithm
is shown to converge to the minimizer at a sublinear ratehis formulation and other similar methods that rely on conve
relaxation one needs to choose a regularization paraneetprdrantee the desired statistical accuracy. Howevensihg the
appropriate value of this parameter may be intractablehEumore, the convex signal models usually provide an aqpmration
of the ideal structures the estimates should have, whileeitaim tasks such as variable selection solutions are nesdjuo
exhibit the exact structure considered. Therefore, in gasks, convex optimization techniques may vyield estim#ias do
not satisfy the desired structural properties , albeit sately approximating the true parameter. These shortogsnimotivate
application of combinatorial sparsity structures in noeér statistical models, extending prior results suchihg J] that have
focused exclusively on linear models.

Among the non-convex greedy algorithms, a generalizatibrCompressed Sensing is considered ir][where the
measurement operator is a nonlinear map and the union opacks is assumed as the signal model. This formulation,
however, admits only a limited class of objective functighat are described using a norm. Furthermotie] proposes a
generalization of the Orthogonal Matching Pursuit aldonit[15] that is specifically designed for estimation of group spars
parameters in Generalized Linear Models (GLMs). Alsd] [studies the problem of minimizing a generic objective fime
subject to sparsity constraint from the optimization pecspe. Using certain necessary optimality conditionstfar sparse
minimizer, a few iterative algorithms are proposed Iri][that converge to the sparse minimizer, should the objectatisfies
some conditions. However, that work does not address themiziation under structured sparsity.
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In this paper we study the projected gradient descent methagproximate the minimizer of a cost function subject to a
model-based sparsity constraint. The algorithm is desdrib Sectioril. The sparsity model considered in this paper is similar
to the models in4], [9] with minor differences in the definitions. To guarantee #ueuracy of the algorithm our analysis
requires the cost function to have a Stable Model-Resttietessian (SMRH) as defined in Sectidh. Using this property
we show that for any given reference point in the consideredeat) each iteration shrinks the distance to the referena® p
up to an approximation error. As an example, Sectibrconsiders the cost functions that arise in Generalizeddriiodels
and discusses how the proposed sufficient condition (iMRIS) can be verified and how large the approximation error of
the algorithm is. To make precise statements on the SMRH arttiesize of the approximation error we assume some extra
properties on the cost function and/or the data distriloutiéinally, we discuss and conclude in Sectién

Notation.: In the remainder of the paper we denote the positive part eenumber: by (x)_ . For a positive integek,
the set{1,2,...,k} is denoted byk]. Vectors and matrices are denoted by boldface charactdrseis by calligraphic letters.
The support set (i.e., the set of non-zero coordinates) cfciovx is denoted bysupp (x). Restriction of ap-dimensional
vectorw to its entries corresponding to an index 3et [p] is denoted byv|,. Similarly Az denotes the restriction of a matrix
A to the rows enumerated 8. For square matriceA andB we write B < A to state thatA — B is positive semidefinite.
We denote the power set of a sétas 2. For two non-empty families of set&; and F, we write F, U F, to denote another
family of sets given by{X; U X | X1 € F; and X, € F»}. Moreover, for any non-empty family of sefs for conciseness we
setF/ = Fu...u F where the operatiow is performed; — 1 times. The inner product associated with a Hilbert spdcs
written as(, -). The norm induced by this inner product is denoted|dy We useV f (-) and V2f (-) to denote the gradient
and the Hessian of a twice continuously differentiable fiomcf : H — R. For an index sef C [p] with p = dim (H), the
restriction of the gradient to the entries selectedZbgnd the restriction of the Hessian to the entries selected kyZ are
denoted byVz f (-) and VZf (-), respectively. Finally, numerical superscripts withirrgrgtheses denote the iteration index.

II. PROBLEM STATEMENT AND ALGORITHM

To formulate the problem of minimizing a cost function swbj® structured sparsity constraints, first we provide anitédn
of the sparsity model. This definition is an alternative wagescribing theCombinatorial Sparse Models [7]. In comparison,
our definition merely emphasizes the role of a family of indexs as aeneratorof the sparsity model.

Definition 1. Suppose thap and k£ are two positive integers with < p. Furthermore, denote bg, a family of some
non-empty subsets dp|] that have cardinality at moét The setUSeck 29 is called a sparsity model of ordérgenerated by
Ci, and denoted byM (Cy).

Remarkl. Note that if a setS € Cy. is a subset of another set @, then the same sparsity model can still be generated after
removingS from C, (i.e., M (Cx) = M (C;\ {S})). Thus, we can assume that there is no pair of distinct sef ithat one
is a subset of the other.

In this paper we aim to approximate the solution to the oation problem
arg min f(8)  s.t.supp (8) € M (Cr), 1)

where f : H — R is a cost function with# being ap-dimensional real Hilbert space, aod (C;) a given sparsity model
described by Defl. To approximate a solutio@ to (1) we use grojected gradient descentethod summarized in Ald.. The
only difference between Algl and standard projected gradient descent methods studieginirex optimization literature is
that the projection, in ling, is performed onto the generally non-convex.$¢tCy). The projection operatdpc, , : H — H
at any given poin®, € H is defined as a solution to

arg g1€1?r_1[ |6 — 00| s.t.supp(0) € M (Cx) and 0] < r. )

Remark2. In the context of statistical estimation, the cost functjof) is usually the empirical loss associated with some
observations generated by an underlying true paran@étein these problems, it is more desired to estim@teas it describes
the data. The analysis presented in this paper allows ei@dutae approximation error of the proposed algorithm wétbpect

to any parameter vector in the considered sparsity modiidimg 6 and ©*. However, the approximation error with respect
to the statistical trutl®* can be simplified and interpreted to a greater extent. Weoeddd» more on this in Sectioihl .

Remark 3. Assuming that for everyS <€ (; the cost function has a uniqgue minimum over the set
{6 | supp (8) C S and ||6|| < r}, the operatoP¢, . [-] can be defined without invokinthe axiom of choicéecause there
are only a finite number of choices for the setOne may also question the necessity of the constt@ijt< r in (2). As
discussed later in Sectidiv, in statistical estimation problems where the cost fumct#onot quadratic the sufficient condition
we rely on cannot be guaranteed to hold unless the iteraghentrue parameter lie in a bounded set. This shortcoming
is typical for convergence proofs that use similar types afditions (cf. [L7]-[20]). Finally, the exact projection onto the
sparsity modelM (C.) might not be tractable. One may desire to show that accuratypbe guaranteed even using an inexact
projection operator, at the cost of an extra error term. tErise and complexity of algorithms that find the desired erac



Algorithm 1: Gradient Descent with Model Sparsity Constraint

input : Cy, the family of possible supports,
r, the radius of feasible set

1+—0, 00 «—0
repeat

1 Choose step-sizg) > 0

x® — 9 _ iy (9@))

ot . Pe, . [X(i)]

4 i— i+ 1
until halting condition holds
return 0%

N

w

approximate projections, disregarding the length coimgtia (2) (i.e., Pc, 4+ []), are studied in], [9] for several interesting
sparsity models. Also, in the general case wheke +o0o one can derive a projectidPc, , [0] from P¢, 4+ [0] (see Lemma
2 in the Appendix). It is straightforward to generalize theatantees in this paper to cases where only approximatectimje
is tractable. However, we do not attempt it here; our focus istudy the algorithm when the cost function is not necégsar
quadratic. Instead, we apply the results to statisticainadion problems with non-linear models and we derive bsuoi the
statistical error of the estimate.

IIl. THEORETICAL ANALYSIS
A. Stable Model-Restricted Hessian

In order to demonstrate accuracy of estimates obtainedyudin 1 we require a variant of th&table Restricted Hessian
(SRH) condition proposed ir?[l] to hold. The SRH condition basically characterizes costfions that have bounded curvature
over canonical sparse subspaces. In this paper we requéredhdition to hold merely for the signals that belong to the
considered model. Furthermore, we explicitly bound thejllerof the vectors at which the condition should hold. As \widl
discussed later, this restriction is necessary in generahdn-quadratic cost functions. The condition we rely dwe Stable
Model-Restricted Hessian (SMRH), can be formally definedodlsws.

Definition 2. Let f : H — R be a twice continuously differentiable function. Furthems letac, and e, be in turn the
largest and smallest real numbers such that

Bck ”AH2 < <A,V2f (9) A>S Qg ||AH27 (3)

holds for allA and® such thatupp (A)Usupp (0) € M (Ci) and||©]| < r. Thenf is said to have a Stable Model-Restricted
Hessian with respect to the mod&f (Cj;) with constantuc, > 1 in a sphere of radius > 0, or in short (i, ,r)-SMRH, if

1 <ac,/Be, < pey-

Remark4. Typically in parametric estimation problems a sample lasscfion!(0,x,y) is associated with the covariate-
response pair(x,y) and a paramete©. Given n iid observations the empirical loss is formulated &g (0) =

% o1 1(0,%;,y;). The estimator under study is the minimizer of the empitiiess, perhaps considering an extra regularization
or constraint for the parametér Most of the algorithms proposed for sparse estimationlprob require that the cost function
is strongly convex over a restricted but unbounded set @fctions around the true parame€. It is known, however, that
L, (8) as an empirical process is a good approximation of the eggédossL (0) = E [l (6, x,y)] (see P2] and [23, Chapter
5]). If the required sufficient condition is not satisfied by @) for a valid choice ofo*, then in general it cannot be satisfied
at the same®™ by L,, (0) either. Thus, as also assumed in the prior work either explicl7] or implicitly [ 18]-[20], for a
generic sample loss it is only possible to guarantee themestgf sufficient conditions if the set of valid vect®% are further
restriced, e.g., by bounding their length. This is the nadton behind the restriction imposed on the lengthBoin Def. 2.
Of course, if the true parameter violates this restrictiammay incur an estimation bias as quantified in Theotem

B. Accuracy Guarantee
Using the notion of SMRH we can now state the main theorem.

Theorem 1. Consider the sparsity modelt (Cy) for somek € N and a cost functiory : # — R that satisfies thG{ucg,r)-

SMRH condition with parametexscs and s in (3). If 7* = 2/ (Oéc;j - ﬁcg) then for any® € M (C) with ||6]| < r the
iterates of Alg.1 obey

=] <

00~ 8] +20 |Vz/ (@) @



n@® Hep 1
n* ucgﬂ

where () = andZ = supp (chm [Vf (5)})

Remark5. One should choose the step size to achieve a contracticor fagt) that is as small as possible. Straightforward
algebra shows that the constant step-gize= n* is optimal, but this choice may not be practical as the contstes andﬁcz

might not be known. Instead, we can always choose the stepsstch thal/acz <n® < 1/5c,§ provided that the cost function
obeys the SMRH condition by setting”) = 1/ (A, V2f (8) A) for someA,0 € H such thatupp (A)Usupp (0) € M (C}).
For this choice ofy”), we havey") < ics — 1.

-1

Corollary 1. A fixed step-size > 0 coefficient corresponds to a fixed contraction coefficient -1 T 3+1 + ni — 1‘. In
this case, assuming thaty # 1, the i-th iterate of Alg.1 satisfies

|6 =8| < 2)'[o] +2n71 [Vzf (®)]]- (5)

In particular,
(i) if pes <3 andny =n* =2/ (acg +BC2), or
(i) if ey < 3 andn e [1/acy,1/fcs,
the iterates converge t6 up to an approximation error bounded above ?%’;— |Vzf (©)|| with contraction factor2y < 1.

Proof: Applying (4) recursively under the assumptions of the corollary andgishe identityzz;0 (27)j = %

proves B). In the first case, ifucg <3andn=n*=2/ (acg +5cg) we have2vy < 1 by definition of~. In the second

Pe3
case, one can deduce frome [l/ace 1/5@} that |n/n* — 1] < cg
simultaneously at) = l/ﬁcs Thereforey < ez —1 < 1/2 and thus2y < 1. Flnally, in both cases it immediately follows
from (5) that the approximation error converges-#&.- L |[Vzf (8)]| from below asi — +oo. [ |

IV. APPLICATION IN GENERALIZED LINEAR MODELS

Generalized Linear Models (GLMs) are among the most comynos¢d models for parametric estimation in variety of ap-
plications P4]. Linear, logistic, Poisson, and gamma models used in spmading regression problems all belong to the family
of GLMs. Given a covariate vector € X C R? and a true paramet&* < R?, the response variablec ) C R in canonical
GLMs is assumed to follow an exponential family conditiod@tribution:y | x;0* ~ Z (y )exp( (x, 9*) ¥ ((x,0%))),
whereZ (y) is a positive function, ang : R — R is thelog-partition functionthat satisfies) (t) = log fy y) exp (ty) dy for
all t € R. Examples of the log-partition function include but are hiwtited to vyin (t) = t2/202, g (t) = log (1 +exp(t)),
and¥peis(t) = exp (t) corresponding to linear, logistic, and Poisson modelqeetvely.

Suppose that: iid covariate-response pairfgx;,y;)}._, are observed. In the Maximum Likelihood Estimation (MLE)
framework the negative log likelihood is used as a measutbentliscrepancy between the true paraméteand an estimate
0 based on the observations. Formally, the average of negaiiyvlikelihoods is considered as the empirical loss

— %Zw ((xi,0)) —yi (x;,0),
i—1

and the MLE is performed by minimizing (6) over the set of feasibl@. The constants and Z that appear in the distribution
are disregarded as they have no effect in the outcome.

A. Verifying SMRH for GLMs
Assuming that) (-) is twice continuously differentiable, the Hessian fof-) is equal to

Zw" x;, 0)) X;X

Under the assumptions for GLMs, it can be shown tb(é(-) is non-negative (i.e4 (-) is convex). For a given sparsity model
generated by, let S be an arbitrary support set &), and suppose thatpp (0) C S and||@| < r . Furthermore, define

Dy, (u) == max " (tu) and dy, (u):= . min " (tu).

el—r,r] e[—r,r]

Using the Cauchy-Schwarz inequality we haye;, 6)| < r || x;|¢|| which implies

1 & T 1 & T
- > dy s (Ixilsl) xils xils < V3 (0)< - > Dy (Ixilsl) xils xils
= =1



These matrix inequalities are precursors3)f (mposing further restriction on the distribution of theveriate vectorgx;}.  ,
allows application of the results from random matrix theoggarding the extreme eigenvalues of random matrices (gee e
[25] and [26]).

For example, in the logistic model whete= v,, we can show thab,, . (u) = } anddy, (u) = Zsech2 (%%). Assuming
that the covariate vectors are iid instances of a randomoxeathose length almost surely bounded by one, we obtain
dyp.r (1) > %sechz (g) Using the matrix Chernoff inequality?f] the extreme eigenvalues (#XSXE can be bounded with
probability 1 — exp (log k — Cn) for some constan€ > 0 (see P1] for detailed derivations). Using these results and taking
the union bound over alf € C;, we obtain bounds for the extreme eigenvalues/gff (6) that hold uniformly for all sets

S € C;, with probability 1 — exp (log (k |Cx|) — Cn). Thus @) may hold ifn = O (log (k [Ck|))

B. Approximation Error for GLMs

Suppose that the approximation error is measured with cegped = Pc, .- (0] where©” is the statistical truth in the
considered GLM. It is desirable to further simplify the apgmation error bound provided in Corollaty which is related
to the statistical precision of the estimation problem. Toeollary provides an approximation error that is propmél to

HVTf( )H where7T = supp (Pcz - {Vf( )D . We can write
7r1 (09) = 130 (0 (0) )

i=1
which yieIdsHVTf( )H = || X7z| whereX = % [x1 %2 -+ x, Jandz|,, =z = % Therefore,

3|}—‘

2
[vrr(et)] < 1712, I21?

where||-||,, denotes the operator norm. Again using random matrix theneycan find an upper bound f§Xz||,, that holds
uniformly for anyZ € C? and in particular foiZ = 7. Henceforth W/ > 0 is used to denote this upper bound
The second term in the bound can be written as

Ja]* = %; (4 ({x0")) ~ )"

To further simplify this term we need to make assumptionsualiwe log-partition function) (-) and/or the distribution of the
covariate-response pajix, y). For instance, if)’ (-) and the response variableare bounded, as in the logistic model, then

2
Hoeffding’s inequality implies that for some smalt> 0 we havel|z||* < E {(w’ (<x, 9l>) — y) :|+€ with probability at least

1—exp (-0 (€n?)). Since in GLMs the true paramet8f is the minimizer of the expected lo&s ((x, 0)) — y (x, 0) | x|
we deduce thak [/ ({(x,0)) — y | x] = 0 and henceE [’ ({(x,0)) — y] = 0. Therefore,

ol < 8 [5 [ (v ((x.0%)) = v/ (.0 +9/(x.0%) =) Ix]] +¢
<k (v ({x04)) v (o) | +E [ (x.0) - 7] e

2
o1 Tstat

Then it follows from Corollaryl and the fact thaf| X| ||, < W that

Y
d2
2nW 2nW
(27 H + 1 2va§m+ 61 + d9.

Note that the total approximation error is comprised of tvartg The first part is due to statistical error that is givgn b

12 ‘;V 020 and 51 + 4 is the second part of the error due to the bias that occursubeaaf an infeasible true parameter.

The bias vanlshes if the true parameter lies in the congideoeinded sparsity model (i.6,” = P¢, . [0]).



V. CONCLUSION

We studied the projected gradient descent method for maaiticin of a real valued cost function defined over a finite-
dimensional Hilbert space, under structured sparsity tcaimsés. Using previously known combinatorial sparsity dats, we
define a sufficient condition for accuracy of the algorithiee SMRH. Under this condition the algorithm converges to the
desired optimum at a linear rate up to an approximation eunlike the previous results on greedy-type methods thakiype
have focused on linear statistical models, our algorithmpliap to a broader family of estimation problems. To provide
example, we examined application of the algorithm in ediimmawith GLMs. One can verify the SMRH for a specific statiati
model. The approximation error can also be bounded by stafigrecision and the potential bias. An interestingdatiup
problem is to find whether the approximation error can be owed and the derived error is merely a by-product of reqgirin
some form of restricted strong convexity through SMRH. Amtproblem of interest is to study the properties of the rEtigm
when the domain of the cost function is not finite-dimensiona

APPENDIX
PROOFS

Lemma 1. Suppose thaf is a twice differentiable function that satisfie®) for a given® and all A such thatsupp (A) U
supp (0) € M (Ci). Then we have

[(a,v) = {u, V[ (8)v)| < (nack ;5ck s

ac, + Be
B ) a1

for all n > 0 andu, v € H such thatsupp (u &+ v) Usupp (0) € M (Cy).

Proof: We first the prove the lemma for unit-norm vectarsand v. Sincesupp (u+ v) Usupp (8) € M (Cx) we can
use @) for A = u + v to obtain

Bey [u+v|? < {(u+v,V2f(8) (u+v))< ac, [uxv|®.

These inequalities and the assumptiorj| = ||v|| = 1 then yield

fo 200 0atlo v < (n v (o) vys e Py dat oy, )

where we used the fact th&? f (0) is symmetric sincef is twice continuously differentiable. Multiplying all stg byn and
rearranging the terms then imply

nack - /BC;C > ‘(nack +/8Ck

5 > 5 —1> <u,v>+<u,v>—n<u,v2f(9)v>

2

ag, + fBe
,'7 k2 k

> [t = (52 @ )] - | (122 1)

> ‘(u,v}—n<u,v2f(9)v>| -

—1\, 6)

which is equivalent to result for unit-normn andv as desired. For the general case one can write ||ul| u’ andv = ||v| v’
such thatu’ and v’ are both unit-norm. It is straightforward to verify that mgi(6) for u’ and v’ as the unit-norm vectors
and multiplying both sides of the resulting inequality ||| ||v|| yields the desired general case. [ ]

. _ . 112 _ .
Proof of Theorem 1: Using optimality of@“*") and feasibility of@ one can deduc#e““) —xD| <|o-x® HQ,
with x(¥ as in line 2 of Alg. 1. Expanding the squared norms using the inner productHofthen shows0
<9(i“) —9,2x®—pl*Y _ §> or equivalently) < <A(”1), 200 _2p(Ov f (§+ A(i)) —A(”1)> , whereA® = @
and A(+Y) = 9+ _§. Adding and subtractingn®) <A(i+1), i (§)> and rearranging yields

<
-0

| <2 00) 2 (0,51 (5+.4) - 55 @)
-2 (A,95 @) o

Since f is twice continuously differentiable by assumption, it Iéels form the mean-value theorem that
<A(i+1),Vf (§+A(i)) —Vf (§)> = <A(i+1),V2f (§+tA(i)) A(i)>, for somet € (0,1). Furthermore, because,

9@, 8¢+ all belong to the model set (C,) we havesupp (§+tA(i)) € M (C?) and therebysupp (A(i“)) U



supp (§+tA(i)) e M (C}j) Invoking the (ucg,r)-SMRH condition of the cost function and applying Lemrhawith
the sparsity modeM (C3), © = 8 +tA", andy = ¥ then yields

‘<A<z‘+1>, A<i>> —p® <A(”1),Vf (§+ A(z‘)) _vf (§)>‘ <A@
(a6 f(§)H < | V=f (8)] by the definition ofZ, (7)

jatetfla®

Using the Cauchy-Schwarz inequality and the fact tHﬁt,

supp
. 2 X . .
implies thatHA(”l)H < 24(@ ‘A(”l)H HA(Z)

the theorem.

’ +2n®

’A“*”H |Vzf (®)] - CancelingHA(””H from both sides proves
Lemma 2 (Bounded Model Projection)Given an arbitraryhy € #, a positive real number, and a sparsity model generator
Ci, a projectionP¢, , [ho] can be obtained as the projection Bf, . [ho] on to the sphere of radius.
Proof: To simplify the notation let = Pc, » [hg] andS = supp (fl) ForS C [p] define
hy (S) = argmhin lh —hol| s.t. ||h|| <r andsupp (h) C S.
It follows from the definition ofP¢, , [ho] thatS € argmingee, |/ho (S) — hol|. Using

I (8) = holI* = [[ho (S) = hols = ho||*= |[ho (8) = hols ]| + I ho| 5|,

we deduce thath, (S) is the projection of hy|s onto the sphere of radius. Therefore, we can writehy (S) =
min {1, 7/ [ ho|s||} ho|g and from that

S € arg min |jmin {1, 7/ || ho|s||} ho|s — hol/*
SelCy

. : 2 2
= arg min[min {0,/ ||ho|g[l — 1} hols " + [[hols]|

SeCy
- in ((1=7r/|hel<|)? —1) ho| < 12
arg min (1 =7/ [ Bols D} — 1) ol
o L 2_ _ 2
= arg max q(S) == [ ho|slI” — (|[holsl| — ) -
Furthermore, let
So = supp (Pe, oo [ho]) = argmax | hols]|. (8)
€Cyk

If || holg, || < 7 theng (S) = | holll < ¢(So) for anyS € €y, and therebyS = S,. Thus, we focus on cases thgho|g, || >
which impliesg (So) = 2 | holg, || 7 —r. For anyS € Cy if [|ho|g|| < r we haveg (S) = || ho|s||* < r? < 2]/ holg, || r—7% =
¢ (So), and if | ho|s|| > r we haveg (S) = 2 ||ho|g||r —r? <2 | hols, || 7 = = q(So) where @) is applied. Therefore, we
have shown thal = Sy. It is then straightforward to show the desired result thajgqetingPe, 4 [ho] onto the centered
sphere of radiug yieldsP¢, , [ho]. |
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