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Abstract

In the paper, we consider the problem of link prediction in time-evolving graphs.
We assume that certain graph features, such as the node degree, follow a vector
autoregressive (VAR) model and we propose to use this information to improve
the accuracy of prediction. Our strategy involves a joint optimization procedure
over the space of adjacency matrices and VAR matrices which takes into account
both sparsity and low rank properties of the matrices. Oracle inequalities are de-
rived and illustrate the trade-offs in the choice of smoothing parameters when
modeling the joint effect of sparsity and low rank property.The estimate is com-
puted efficiently using proximal methods through a generalized forward-backward
agorithm.

1 Introduction

Forecasting systems behavior with multiple responses has been a challenging issue in many contexts
of applications such as collaborative filtering, financial markets, or bioinformatics, where responses
can be, respectively, movie ratings, stock prices, or activity of genes within a cell. Statistical model-
ing techniques have been widely investigated in the contextof multivariate time series either in the
multiple linear regression setup [4] or with autoregressive models [25]. More recently, kernel-based
regularized methods have been developed for multitask learning [7, 2]. These approaches share the
use of the correlation structure among input variables to enrich the prediction on every single output.
Often, the correlation structure is assumed to be given or itis estimated separately. A discrete en-
coding of correlations between variables can be modeled as agraph so that learning the dependence
structure amounts to performing graph inference through the discovery of uncovered edges on the
graph. The latter problem is interestingper seand it is known as the problem of link prediction
where it is assumed that only a part of the graph is actually observed [16, 9]. This situation occurs
in various applications such as recommender systems, social networks, or proteomics, and the ap-
propriate tools can be found among matrix completion techniques [22, 5, 1]. In the realistic setup
of a time-evolving graph, matrix completion was also used and adapted to take into account the
dynamics of the features of the graph [19]. In this paper, we study the prediction problem where the
observation is a sequence of graphs adjacency matrices(At)0≤t≤T and the goal is to predictAT+1.
This type of problem arises in applications such as recommender systems where, given informa-
tion on purchases made by some users, one would like to predict future purchases. In this context,
users and products can be modeled as the nodes of a bipartite graph, while purchases or clicks are
modeled as edges. In functional genomics and systems biology, estimating regulatory networks in
gene expression can be performed by modeling the data as graphs and fitting predictive models is
a natural way for estimating evolving networks in these contexts. A large variety of methods for
link prediction only consider predicting from a single static snapshot of the graph - this includes
heuristics [16, 21], matrix factorization [13], diffusion[17], or probabilistic methods [23]. More
recently, some works have investigated using sequences of observations of the graph to improve the
prediction, such as using regression on features extractedfrom the graphs [19], using matrix factor-
ization [14], continuous-time regression [27]. Our main assumption is that the network effect is a
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cause and a symptom at the same time, and therefore, the edgesand the graph features should be
estimated simultaneously. We propose a regularized approach to predict the uncovered links and the
evolution of the graph features simultaneously. We provideoracle bounds under the assumption that
the noise sequence has subgaussian tails and we prove that our procedure achieves a trade-off in the
calibration of smoothing parameters which adjust with the sparsity and the rank of the unknown ad-
jacency matrix. The rest of this paper is organized as follows. In Section 2, we describe the general
setup of our work with the main assumptions and we formulate aregularized optimization problem
which aims at jointly estimating the autoregression parameters and predicting the graph. In Section
3, we provide technical results with oracle inequalities and other theoretical guarantees on the joint
estimation-prediction. Section 4 is devoted to the description of the numerical simulations which
illustrate our approach. We also provide an efficient algorithm for solving the optimization prob-
lem and show empirical results. The proof of the theoreticalresults are provided as supplementary
material in a separate document.

2 Estimation of low-rank graphs with autoregressive features

Our approach is based on the asumption that features can explain most of the information contained
in the graph, and that these features are evolving with time.We make the following assumptions
about the sequence(At)t≥0 of adjacency matrices of the graphs sequence.

Low-Rank. We assume that the matricesAt have low-rank. This reflects the presence of highly
connected groups of nodes such as communities in social networks, or product categories and groups
of loyal/fanatic users in a market place data, and is sometimes motivated by the small number of
factors that explain nodes interactions.

Autoregressive linear features. We assume to be given a linear mapω : Rn×n → R
d defined by

ω(A) =
(
〈Ω1, A〉, · · · , 〈Ωd, A〉

)
, (1)

where(Ωi)1≤i≤d is a set ofn×n matrices. These matrices can be either deterministic or random in
our theoretical analysis, but we take them deterministic for the sake of simplicity. The vector time
series(ω(At))t≥0 has autoregressive dynamics, given by a VAR (Vector Auto-Regressive) model:

ω(At+1) = W⊤
0 ω(At) +Nt+1,

whereW0 ∈ R
d×d is a unknown sparse matrix and(Nt)t≥0 is a sequence of noise vectors inRd.

An example of linear features is the degree (i.e. number of edges connected to each node, or the sum
of their weights if the edges are weighted), which is a measure of popularity in social and commerce
networks. Introducing

XT−1 = (ω(A0), . . . , ω(AT−1))
⊤ and XT = (ω(A1), . . . , ω(AT ))

⊤,

which are bothT × d matrices, we can write this model in a matrix form:

XT = XT−1W0 +NT , (2)

whereNT = (N1, . . . , NT )
⊤.

This assumes that the noise is driven by time-series dynamics (a martingale increment), where each
coordinates are independent (meaning that features are independently corrupted by noise), with a
sub-gaussian tail and variance uniformly bounded by a constantσ2. In particular, no independence
assumption between theNt is required here.

Notations. The notations‖·‖F , ‖·‖p, ‖·‖∞, ‖·‖∗ and‖·‖op stand, respectively, for the Frobenius
norm, entry-wiseℓp norm, entry-wiseℓ∞ norm, trace-norm (or nuclear norm, given by the sum of the
singular values) and operator norm (the largest singular value). We denote by〈A,B〉 = tr(A⊤B)
the Euclidean matrix product. A vector inRd is always understood as ad × 1 matrix. We denote
by ‖A‖0 the number of non-zero elements ofA. The productA ◦ B between two matrices with
matching dimensions stands for the Hadamard or entry-wise product betweenA andB. The matrix
|A| contains the absolute values of entries ofA. The matrix(M)+ is the componentwise positive part
of the matrix M, and sign(M) is the sign matrix associated toM with the convention sign(0) = 0
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If A is a n × n matrix with rankr, we write its SVD asA = UΣV ⊤ =
∑r

j=1 σjujv
⊤
j where

Σ = diag(σ1, . . . , σr) is a r × r diagonal matrix containing the non-zero singular values ofA in
decreasing order, andU = [u1, . . . , ur], V = [v1, . . . , vr] aren× r matrices with columns given by
the left and right singular vectors ofA. The projection matrix onto the space spanned by the columns
(resp. rows) ofA is given byPU = UU⊤ (resp.PV = V V ⊤). The operatorPA : Rn×n → R

n×n

given byPA(B) = PUB + BPV − PUBPV is the projector onto the linear space spanned by the
matricesukx

⊤ andyv⊤k for 1 ≤ j, k ≤ r andx, y ∈ R
n. The projector onto the orthogonal space is

given byP⊥
A (B) = (I − PU )B(I − PV ). We also use the notationa ∨ b = max(a, b).

2.1 Joint prediction-estimation through penalized optimization

In order to reflect the autoregressive dynamics of the features, we use a least-squares goodness-of-
fit criterion that encourages the similarity between two feature vectors at successive time steps. In
order to induce sparsity in the estimator ofW0, we penalize this criterion using theℓ1 norm. This
leads to the following penalized objective function:

J1(W ) =
1

dT
‖XT −XT−1W‖2F + κ‖W‖1,

whereκ > 0 is a smoothing parameter.

Now, for the prediction ofAT+1, we propose to minimize a least-squares criterion penalized by the
combination of anℓ1 norm and a trace-norm. This mixture of norms induces sparsity and a low-rank
of the adjacency matrix. Such a combination ofℓ1 and trace-norm was already studied in [8] for the
matrix regression model, and in [20] for the prediction of anadjacency matrix.

The objective function defined below exploits the fact that if W is close toW0, then the features of
the next graphω(AT+1) should be close toW⊤ω(AT ). Therefore, we consider

J2(A,W ) =
1

d
‖ω(A)−W⊤ω(AT )‖2F + τ‖A‖∗ + γ‖A‖1,

whereτ, γ > 0 are smoothing parameters. The overall objective function is the sum of the two
partial objectivesJ1 andJ2, which is jointly convex with respect toA andW :

L(A,W )
.
=

1

dT
‖XT −XT−1W‖2F +κ‖W‖1+

1

d
‖ω(A)−W⊤ω(AT )‖22+ τ‖A‖∗+γ‖A‖1, (3)

If we choose convex conesA ⊂ R
n×n andW ⊂ R

d×d, our joint estimation-prediction procedure is
defined by

(Â, Ŵ ) ∈ argmin
(A,W )∈A×W

L(A,W ). (4)

It is natural to takeW = R
d×d andA = (R+)

n×n since there is noa priori on the values of the
feature matrixW0, while the entries of the matrixAT+1 must be positive.

In the next section we propose oracle inequalities which prove that this procedure can estimateW0

and predictAT+1 at the same time.

2.2 Main result

The central contribution of our work is to bound the prediction error with high probability under the
following natural hypothesis on the noise process.

Assumption 1. We assume that(Nt)t≥0 satisfiesE[Nt|Ft−1] = 0 for anyt ≥ 1 and that there is
σ > 0 such that for anyλ ∈ R andj = 1, . . . , d andt ≥ 0:

E[eλ(Nt)j |Ft−1] ≤ eσ
2λ2/2.

Moreover, we assume that for eacht ≥ 0, the coordinates(Nt)1, . . . , (Nt)d are independent.

The main result can be summarized as follows. The predictionerror and the estimation error can be
simultaneously bounded by the sum of three terms that involve homogeneously (a) the sparsity, (b)
the rank of the adjacency matrixAT+1, and (c) the sparsity of the VAR model matrixW0. The tight
bounds we obtain are similar to the bounds of the Lasso and areupper bounded by:
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C1

√
log d

Td2
‖W0‖0 + C2

√
logn

d
‖AT+1‖0 + C3

√
logn

d
rankAT+1 .

The positive constantsC1, C2, C3 are proportional to the noise levelσ. The interplay between the
rank and sparsity constraints onAT+1 are reflected in the observation that the values ofC2 andC3

can be changed as long as their sum remains constant.

3 Oracle inequalities

In this section we give oracle inequalities for the mixed prediction-estimation error which is given,
for anyA ∈ R

n×n andW ∈ R
d×d, by

E(A,W )2
.
=

1

d
‖(W −W0)

⊤ω(AT )− ω(A−AT+1)‖22 +
1

dT
‖XT−1(W −W0)‖2F . (5)

It is important to have in mind that an upper-bound onE implies upper-bounds on each of
its two components. It entails in particular an upper-boundon the feature estimation error
‖XT−1(Ŵ − W0)‖F that makes‖(Ŵ − W0)

⊤ω(AT )‖2 smaller and consequently controls the
prediction error over the graph edges through‖ω(Â−AT+1)‖2.

The upper bounds onE given below exhibit the dependence of the accuracy of estimation and pre-
diction on the number of featuresd, the number of edgesn and the numberT of observed graphs in
the sequence.

Let us recallNT = (N1, . . . , NT )
⊤ and introduce the noise processes

M = −
d∑

j=1

(NT+1)jΩj and Ξ =

T+1∑

t=1

ω(At−1)N
⊤
t ,

which are, respectively,n× n andd × d random matrices. The source of randomness comes from
the noise sequence(Nt)t≥0, see Assumption 1. If these noise processes are controlled correctly, we
can prove the following oracle inequalities for procedure (4). The next result is an oracle inequality
of slow type (see for instance [3]), that holds in full generality.

Theorem 1. Let (Â, Ŵ ) be given by(4) and suppose that

τ ≥ 2α

d
‖M‖op, γ ≥ 2(1− α)

d
‖M‖∞ and κ ≥ 2

dT
‖Ξ‖∞ (6)

for someα ∈ (0, 1). Then, we have

E(Â, Ŵ )2 ≤ inf
(A,W )∈A×W

{
E(A,W )2 + 2τ‖A‖∗ + 2γ‖A‖1 + 2κ‖W‖1

}
.

For the proof of oracle inequalities of fast type, therestricted eigenvalue(RE) condition introduced
in [3] and [10, 11] is of importance. Restricted eigenvalue conditions are implied by, and in gen-
eral weaker than, the so-calledincoherenceor RIP (Restricted isometry property, [6]) assumptions,
which excludes, for instance, strong correlations betweencovariates in a linear regression model.
This condition is acknowledged to be one of the weakest to derive fast rates for the Lasso (see [26]
for a comparison of conditions).

Matrix version of these assumptions are introduced in [12].Below is a version of the RE assumption
that fits in our context. First, we need to introduce the two restriction cones.

The first cone is related to the‖W‖1 term used in procedure (4). IfW ∈ R
d×d, we denote by

ΘW = sign(W ) ∈ {0,±1}d×d the signed sparsity pattern ofW and byΘ⊥
W ∈ {0, 1}d×d the

orthogonal sparsity pattern. For a fixed matrixW ∈ R
d×d andc > 0, we introduce the cone

C1(W, c)
.
=

{
W ′ ∈ W : ‖Θ⊥

W ◦W ′‖1 ≤ c‖ΘW ◦W ′‖1
}
.

This cone contains the matricesW ′ that have their largest entries in the sparsity pattern ofW .
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The second cone is related to mixture of the terms‖A‖∗ and‖A‖1 in procedure (4). Before defining
it, we need further notations and definitions.

For a fixedA ∈ R
n×n andc, β > 0, we introduce the cone

C2(A, c, β) .
=

{
A′ ∈ A : ‖P⊥

A (A′)‖∗ + β‖Θ⊥
A ◦A′‖1 ≤ c

(
‖PA(A

′)‖∗ + β‖ΘA ◦A′‖1
)}

.

This cone consist of the matricesA′ with large entries close to that ofA and that are “almost aligned”
with the row and column spaces ofA. The parameterβ quantifies the interplay between these too
notions.

Definition 1 (Restricted Eigenvalue (RE)). For W ∈ W andc > 0, we introduce

µ1(W, c) = inf
{
µ > 0 : ‖ΘW ◦W ′‖F ≤ µ√

dT
‖XT+1W

′‖F , ∀W ′ ∈ C1(W, c)
}
.

For A ∈ A andc, β > 0, we introduce

µ2(A,W, c, β) = inf
{
µ > 0 : ‖PA(A

′)‖F ∨ ‖ΘA ◦A′‖F

≤ µ√
d
‖W ′⊤ω(AT )− ω(A′)‖2, ∀W ′ ∈ C1(W, c), ∀A′ ∈ C2(A, c, β)

}
.

The RE assumption consists of assuming that the constantsµ1 andµ2 are non-zero. Now we can
state the following Theorem that gives a fast oracle inequality for our procedure using RE.

Theorem 2. Let (Â, Ŵ ) be given by(4) and suppose that

τ ≥ 3α

d
‖M‖op, γ ≥ 3(1− α)

d
‖M‖∞ and κ ≥ 3

dT
‖Ξ‖∞ (7)

for someα ∈ (0, 1). Then, we have

E(Â, Ŵ )2 ≤ inf
(A,W )∈A×W

{
E(A,W )2 +

25

18
µ2(A,W )2

(
rank(A)τ2 + ‖A‖0γ2)

+
25

36
µ1(W )2‖W‖0κ2

}
,

whereµ1(W ) = µ1(W, 5) andµ2(A,W ) = µ2(A,W, 5, γ/τ) (see Definition 1).

The proofs of Theorems 1 and 2 use tools introduced in [12] and[3].

Note that the residual term from this oracle inequality mixes the notions of sparsity ofA andW
via the termsrank(A), ‖A‖0 and‖W‖0. It says that our mixed penalization procedure provides an
optimal trade-off between fitting the data and complexity, measured by both sparsity and low-rank.
This is the first result of this nature to be found in literature.

In the next Theorem 3, we obtain convergence rates for the procedure (4) by combining Theorem 2
with controls on the noise processes. We introduce

v2Ω,op =
∥∥∥1
d

d∑

j=1

Ω⊤
j Ωj

∥∥∥
op

∨
∥∥∥1
d

d∑

j=1

ΩjΩ
⊤
j

∥∥∥
op
, v2Ω,∞ =

∥∥∥1
d

d∑

j=1

Ωj ◦ Ωj

∥∥∥
∞
,

σ2
ω = max

j=1,...,d

1

T + 1

T+1∑

t=1

ωj(At−1)
2,

which are the (observable) variance terms that naturally appear in the controls of the noise processes.
We introduce also

ℓT = 2 max
j=1,...,d

log log

(∑T+1
t=1 ωj(At−1)

2

T + 1
∨ T + 1

∑T+1
t=1 ωj(At−1)2

∨ e

)
,

which is a small (observable) technical term that comes out of our analysis of the noise processΞ.
This term is a small price to pay for the fact that no independence assumption is required on the
noise sequence(Nt)t≥0, but only a martingale increment structure with sub-gaussian tails.
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Theorem 3. Consider the procedure(Â, Ŵ ) given by(4) with smoothing parameters given by

τ = 3ασvΩ,op

√
2(x+ log(2n))

d
, γ = 3(1− α)σvΩ,∞

√
2(x+ 2 logn)

d
,

κ = 6σσω
1

d

√
2e(x+ 2 log d+ ℓT )

T + 1

for someα ∈ (0, 1) and fix a confidence levelx > 0. Then, we have

E(Â, Ŵ )2 ≤ inf
(A,W )∈A×W

{
E(A,W )2 + 25µ2(A)

2 rank(A)α2σ2v2Ω,op

2(x+ log(2n))

d

+ 25µ2(A)
2‖A‖0(1− α)2σ2v2Ω,∞

2(x+ 2 logn)

d

+ 25µ1(W )2‖W‖0σ2σ2
ω

2e(x+ 2 log d+ ℓT )

d2(T + 1)

}

with a probability larger than1− 17e−x, whereµ1 andµ2 are the same as in Theorem 2.

The proof of Theorem 3 follows directly from Theorem 2 basic noise control results. In the next
Theorem, we propose more explicit upper bounds for both the indivivual estimation ofW0 and the
prediction ofAT+1.

Theorem 4. Under the same assumptions as in Theorem 3, for anyx > 0 the following inequalities
hold with a probability larger than1− 17e−x:

1

dT
‖XT (Ŵ −W0)‖2F

≤ inf
A∈A

{1

d
‖ω(A)− ω(AT+1)‖2F +

25

18
µ2(A,W )2

(
rank(A)τ2 + ‖A‖0γ2)

}

+
25

36
µ1(W0)

2‖W0‖0κ2

(8)

‖Ŵ −W0‖1 ≤ 5µ1(W0)
2‖W0‖0κ

+ 6
√
‖W0‖0µ1(W0) inf

A∈A

√
1

d
‖ω(A)− ω(AT+1)‖2F +

25

18
µ2(A,W )2

(
rank(A)τ2 + ‖A‖0γ2)

(9)

‖Â−AT+1‖∗ ≤ 5µ1(W0)
2‖W0‖0κ+ (6

√
rankAT+1 + 5β

√
‖AT+1‖0)µ2(AT+1)

× inf
A∈A

√
1

d
‖ω(A)− ω(AT+1)‖2F +

25

18
µ2(A,W )2

(
rank(A)τ2 + ‖A‖0γ2) .

(10)

4 Algorithms and Numerical Experiments

4.1 Generalized forward-backward algorithm for minimizin g L

We use the algorithm designed in [18] for minimizing our objective function. Note that this algo-
rithm is preferable to the method introduced in [19] as it directly minimizesL jointly in (S,W )
rather than alternately minimizing inW andS.

Moreover we use the novel joint penalty from [20] that is moresuited for estimating
graphs. The proximal operator for the trace norm is given by the shrinkage operation, if
Z = U diag(σ1, · · · , σn)V

T is the singular value decomposition ofZ,

proxτ ||.||∗(Z) = U diag((σi − τ)+)iV
T .

Similarly, the proximal operator for theℓ1-norm is the soft thresholding operator defined by using
the entry-wise product of matrices denoted by◦:

proxγ||.||1 = sgn(Z) ◦ (|Z| − γ)+ .
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The algorithm converges under very mild conditions when thestep sizeθ is smaller than2L , where
L is the operator norm of the joint quadratic loss:

Φ : (A,W ) 7→ 1

dT
‖XT −XT−1W‖2F +

1

d
‖ω(A)−W⊤ω(AT )‖2F .

Algorithm 1 Generalized Forward-Backward to MinimizeL
InitializeA,Z1, Z2,W, q = 2
repeat

Compute(GA, GW ) = ∇A,WΦ(A,W ).
ComputeZ1 = proxqθτ ||.||∗(2A− Z1 − θGA)

ComputeZ2 = proxqθγ||.||1(2A− Z2 − θGA)

SetA = 1
q

∑q
k=1 Zk

SetW = proxθκ||.||1(W − θGW )
until convergence
return (A,W ) minimizingL

4.2 A generative model for graphs having linearly autoregressive features

Let V0 ∈ R
n×r be a sparse matrix,V †

0 its pseudo-inverse such, thatV †
0 V0 = V ⊤

0 V ⊤†
0 = Ir. Fix two

sparse matricesW0 ∈ R
r×r andU0 ∈ R

n×r . Now define the sequence of matrices(At)t≥0 for
t = 1, 2, · · · by

Ut = Ut−1W0 +Nt

and
At = UtV

⊤

0 +Mt

for i.i.d sparse noise matricesNt andMt, which means that for any pair of indices(i, j), with high
probability (Nt)i,j = 0 and(Mt)i,j = 0. We define the linear feature mapω(A) = AV ⊤†

0 , and
point out that

1. The sequence

(
ω(At)

⊤

)

t

=

(
Ut +MtV

⊤†
0

)

t

follows the linear autoregressive relation

ω(At)
⊤ = ω(At−1)

⊤W0 +Nt +MtV
⊤†
0 .

2. For any time indext, the matrixAt is close toUtV0 that has rank at mostr

3. The matricesAt andUt are both sparse by construction.

4.3 Empirical evaluation

We tested the presented methods on synthetic data generatedas in section (4.2). In our experiments
the noise matricesMt andNt where built by soft-thresholdingi.i.d. noiseN (0, σ2). We took as
inputT = 10 successive graph snapshots onn = 50 nodes graphs of rankr = 5. We usedd = 10
linear features, and finally the noise level was set toσ = .5. We compare our methods to standard
baselines in link prediction. We use the area under the ROC curve as the measure of performance
and report empirical results averaged over 50 runs with the corresponding confidence intervals in
figure 4.3. The competitor methods are thenearest neighbors(NN) and static sparse and low-rank
estimation, that is the link prediction algorithm suggested in [20]. The algorithm NN scores pairs
of nodes with the number of common friends between them, which is given byA2 whenA is the
cumulative graph adjacency matrix̃AT =

∑T
t=0 At and the static sparse and low-rank estimation

is obtained by minimizing the objective‖X − ÃT ‖2F + τ‖X‖∗ + γ‖X‖1, and can be seen as the
closeststaticversion of our method. The two methodsautoregressive low-rankandstatic low-rank
are regularized using only the trace-norm, (correspondingto forcingγ = 0) and are slightly inferior
to their sparse and low-rank rivals. Since the matrixV0 defining the linear mapω is unknown we
consider the feature mapω(A) = AV whereÃT = UΣV ⊤ is the SVD ofÃT . The parametersτ
andγ are chosen by 10-fold cross validation for each of the methods separately.
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Figure 1: Left: performance of algorithms in terms of Area Under the ROC Curve, average and
confidence intervals over 50 runs. Right: Phase transition diagram.

4.4 Discussion

1. Comparison with the baselines.This experiment sharply shows the benefit of using a tem-
poral approach when one can handle the feature extraction task. The left-hand plot shows
that if few snapshots are available (T ≤ 4 in these experiments), then static approaches are
to be preferred, whereas feature autoregressive approaches outperform as soon assufficient
numberT graph snapshots are available (see phase transition). The decreasing performance
of static algorithms can be explained by the fact that they use as input a mixture of graphs
observed at different time steps. Knowing that at each time step the nodes have specific
latent factors, despite the slow evolution of the factors, adding the resulting graphs leads to
confuse the factors.

2. Phase transition.The right-hand figure is a phase transition diagram showing in which part
of rank and time domain the estimation is accurate and illustrates the interplay between
these two domain parameters.

3. Choice of the feature mapω. In the current work we used the projection onto the vector
space of the top-r singular vectors of the cumulative adjacency matrix as the linear mapω,
and this choice has shown empirical superiority to other choices. The question of choosing
the best measurement to summarize graph information as in compress sensing seems to
have both theoretical and application potential. Moreover, a deeper understanding of the
connections of our problem with compressed sensing, for theconstruction and theoretical
validation of the features mapping, is an important point that needs several developments.
One possible approach is based on multi-kernel learning, that should be considered in a
future work.

4. Generalization of the method.In this paper we consider only an autoregressive process of
order 1. For better prediction accuracy, one could considermode general models, such as
vector ARMA models, and use model-selection techniques forthe choice of the orders of
the model. A general modelling based on state-space model could be developed as well.
We presented a procedure for predicting graphs having linear autoregressive features. Our
approach can easily be generalized to non-linear prediction through kernel-based methods.

[Appendix : Proof of propositions]

A Proofs of the main results

From now on, we use the notation‖(A, a)‖2F = ‖A‖2F +‖a‖22 and〈(A, a), (B, b)〉 = 〈A,B〉+〈a, b〉
for anyA,B ∈ R

T×d anda, b ∈ R
d.

Let us introduce the linear mappingΦ : Rn×n × R
d×d → R

T×d × R
d given by

Φ(A,W ) =
( 1√

T
XT−1W,ω(A)−W⊤ω(AT )

)
.
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Using this mapping, the objective (3) can be written in the following reduced way:

L(A,W ) =
1

d

∥∥∥
( 1√

T
XT , 0

)
− Φ(A,W )

∥∥∥
2

F
+ γ‖A‖1 + τ‖A‖∗ + κ‖W‖1.

Recalling that the error writes, for anyA andW :

E(A,W )2 =
1

d
‖(W −W0)

⊤ω(AT )− ω(A−AT+1)‖2F +
1

dT
‖XT−1(W −W0)‖2F ,

we have

E(A,W )2 =
1

d

∥∥Φ(A−AT+1,W −W0)‖2F .
Let us introduce also the empirical risk

Rn(A,W ) =
1

d

∥∥∥
( 1√

T
XT , 0

)
− Φ(A,W )

∥∥∥
2

F
.

The proofs of Theorem 1 and 2 are based on tools developped in [12] and [3]. However, the context
considered here is very different from the setting considered in these papers, so our proofs require a
different scheme.

A.1 Proof of Theorem 1

First, note that

Rn(Â, Ŵ )−Rn(A,W )

=
1

d

(
‖Φ(Â, Ŵ )‖2F − ‖Φ(A,W )‖2F − 2〈( 1√

T
XT , 0),Φ(Â−A, Ŵ −W )〉

)
.

Since
1

d

(
‖Φ(Â, Ŵ )‖2F − ‖Φ(A,W )‖2F

)

= E(Â, Ŵ )2 − E(A,W )2 +
2

d
〈Φ(Â −A, Ŵ −W ),Φ(AT+1,W0)〉,

we have

Rn(Â, Ŵ )−Rn(A,W )

= E(Â, Ŵ )2 − E(A,W )2 +
2

d
〈Φ(Â −A, Ŵ −W ),Φ(AT+1,W0)− (

1√
T
XT , 0)〉

= E(Â, Ŵ )2 − E(A,W )2 +
2

d
〈Φ(Â −A, Ŵ −W ), (− 1√

T
NT , NT+1)〉.

The next Lemma will come in handy several times in the proofs.
Lemma 1. For anyA ∈ R

n×n andW ∈ R
d×d we have

〈( 1√
T
NT ,−NT+1),Φ(A,W )〉 = 〈(M,

1

T
Ξ), (A,W )〉 = 1

T
〈W,Ξ〉+ 〈A,M〉.

This Lemma follows from a direct computation, and the proof is thus omitted. This Lemma entails,
together with (4), that

E(Â, Ŵ )2 ≤ E(A,W )2 +
2

dT
〈Ŵ −W,Ξ〉+ 2

d
〈Â−A,M〉

+ τ(‖A‖∗ − ‖Â‖∗) + γ(‖A‖1 − ‖Â‖1) + κ(‖W‖1 − ‖Ŵ‖1).
Now, using Hölder’s inequality and the triangle inequality, and introducingα ∈ (0, 1), we obtain

E(Â, Ŵ )2 ≤ E(A,W )2 +
(2α

d
‖M‖op − τ

)
‖Â‖∗ +

(2α
d
‖M‖op + τ

)
‖A‖∗

+
(2(1− α)

d
‖M‖∞ − γ

)
‖Â‖1 +

(2(1− α)

d
‖M‖∞ + γ

)
‖A‖1

+
( 2

dT
‖Ξ‖∞ − κ

)
‖Ŵ‖1 +

( 2

dT
‖Ξ‖∞ + κ

)
‖W‖1,

which concludes the proof of Theorem 1, using (6). �
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A.2 Proof of Theorem 2

Let A ∈ R
n×n andW ∈ R

d×d be fixed, and letA = U diag(σ1, . . . , σr)V
⊤ be the SVD ofA.

Recalling that◦ is the entry-wise product, we haveA = ΘA◦|A|+Θ⊥
A◦A, whereΘA ∈ {0,±1}n×n

is the entry-wise sign matrix ofA andΘ⊥
A ∈ {0, 1}n×n is the orthogonal sparsity pattern ofA.

The definition (4) of(Â, Ŵ ) is equivalent to the fact that one can find̂G ∈ ∂L(Â, Ŵ ) (an element
of the subgradient ofL at(Â, Ŵ )) that belongs to the normal cone ofA×W at(Â, Ŵ ). This means
that for such âG, and anyA ∈ A andW ∈ W , we have

〈Ĝ, (Â−A, Ŵ −W )〉 ≤ 0. (11)

Any subgradient of the functiong(A) = τ‖A‖∗ + γ‖A‖1 writes

Z = τZ∗ + γZ1 = τ
(
UV ⊤ + P⊥

A (G∗)
)
+ γ

(
ΘA +G1 ◦Θ⊥

A

)

for some‖G∗‖op ≤ 1 and‖G1‖∞ ≤ 1 (see for instance [15]). So, if̂Z ∈ ∂g(Â), we have, by
monotonicity of the sub-differential, that for anyZ ∈ ∂g(A)

〈Ẑ, Â−A〉 = 〈Ẑ − Z, Â−A〉+ 〈Z, Â−A〉 ≥ 〈Z, Â−A〉,
and, by duality, we can findZ such that

〈Z, Â−A〉 = τ〈UV ⊤, Â−A〉+ τ‖P⊥
A (Â)‖∗ + γ〈ΘA, Â−A〉+ γ‖Θ⊥

A ◦ Â‖1.
By using the same argument with the functionW 7→ ‖W‖1 and by computing the gradient of the
empirical risk(A,W ) 7→ Rn(A,W ), Equation (11) entails that
2

d
〈Φ(Â−AT+1, Ŵ −W0),Φ(Â−A, Ŵ −W )〉

≤ 2

d
〈( 1√

T
NT ,−NT+1),Φ(Â−A, Ŵ −W )〉 − τ〈UV ⊤, Â−A〉 − τ‖P⊥

A (Â)‖∗

− γ〈ΘA, Â−A〉 − γ‖Θ⊥
A ◦ Â‖1 − κ〈ΘW , Ŵ −W 〉 − κ‖Θ⊥

W ◦ Ŵ‖1.

(12)

Using Pythagora’s theorem, we have

2〈Φ(Â−AT+1, Ŵ −W0),Φ(Â −A, Ŵ −W )〉
= ‖Φ(Â−AT+1, Ŵ −W0)‖22 + ‖Φ(Â−A, Ŵ −W )‖22 − ‖Φ(A−AT+1,W −W0)‖22.

(13)

It shows that if〈Φ(Â−AT+1,W −W0),Φ(Â−A, Ŵ −W )〉 ≤ 0, then Theorem 2 trivially holds.
Let us assume that

〈Φ(Â−AT+1,W −W0),Φ(Â−A, Ŵ −W )〉 > 0. (14)

Using Hölder’s inequality, we obtain

|〈UV ⊤, Â−A〉| = |〈UV ⊤,PA(Â−A)〉| ≤ ‖UV ⊤‖op‖PA(Â−A)‖∗ = ‖PA(Â−A)‖∗,
|〈ΘA, Â−A〉| = |〈ΘA,ΘA ◦ (Â−A)〉| ≤ ‖ΘA‖∞‖ΘA ◦ (Â−A)‖1 = ‖ΘA ◦ (Â−A)‖1,

and the same is done for|〈ΘW , Ŵ −W 〉| ≤ ‖ΘW ◦ (Ŵ −W )‖1. So, when (14) holds, we obtain
by rearranging the terms of (12):

τ‖P⊥
A (Â−A)‖∗ + γ‖Θ⊥

A ◦ (Â−A)‖1 + κ‖Θ⊥
W ◦ (Ŵ −W )‖1

≤ τ‖PA(Â−A)‖∗ + γ‖ΘA ◦ (Â−A)‖1 + κ‖ΘW ◦ (Ŵ −W )‖1
+

2

d
〈( 1√

T
NT ,−NT+1),Φ(Â−A, Ŵ −W )〉.

(15)

Using Lemma 1, together with Hölder’s inequality, we have for anyα ∈ (0, 1):

〈( 1√
T
NT ,−NT+1),Φ(Â −A, Ŵ −W )〉 = 〈M, Â−A〉+ 1

T
〈Ξ, Ŵ −W 〉

≤ α‖M‖op‖PA(Â−A)‖∗ + α‖M‖op‖P⊥
A (Â−A)‖∗

+ (1 − α)‖M‖∞‖ΘA ◦ (Â−A)‖1 + (1− α)‖M‖∞‖Θ⊥
A ◦ (Â−A)‖1

+
1

T
‖Ξ‖∞(‖ΘW ◦ (Ŵ −W )‖1 + ‖Θ⊥

W ◦ (Ŵ −W )‖1) .

(16)
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Now, using (15) together with (16), we obtain
(
τ − 2α

d
‖M‖op

)
‖P⊥

A (Â−A)‖∗ +
(
γ − 2(1− α)

d
‖M‖∞

)
‖Θ⊥

A ◦ (Â−A)‖1

+
(
κ− 2

dT
‖Ξ‖∞

)
‖Θ⊥

W ◦ (Ŵ −W )‖1

≤
(
τ +

2α

d
‖M‖op

)
‖PA(Â−A)‖∗ +

(
γ +

2(1− α)

d
‖M‖∞

)
‖ΘA ◦ (Â−A)‖1

+
(
κ+

2

dT
‖Ξ‖∞

)
‖ΘW ◦ (Ŵ −W )‖1

which proves, using (7), that

τ‖P⊥
A (Â−A)‖∗ + γ‖Θ⊥

A ◦ (Â−A)‖1 ≤ 5τ‖PA(Â−A)‖∗ + 5γ‖ΘA ◦ (Â−A)‖1.
This proves that̂A−A ∈ C2(A, 5, γ/τ). In the same way, using (15) withA = Â together with (16),
we obtain thatŴ −W ∈ C1(W, 5).

Now, using together (12), (13) and (16) , and the fact that theCauchy-Schwarz inequality entails

‖PA(Â−A)‖∗ ≤
√
rankA‖PA(Â−A)‖F , |〈UV ⊤, Â−A〉| ≤

√
rankA‖PA(Â−A)‖F ,

‖ΘA ◦ (Â−A)‖1 ≤
√
‖A‖0‖ΘA ◦ (Â−A)‖F , |〈ΘA, Â−A〉| ≤

√
‖A‖0‖ΘA ◦ (Â−A)‖F .

and similarly forŴ −W , we arrive at

‖Φ(Â−AT+1, Ŵ −W0)‖22 + ‖Φ(Â−A, Ŵ −W )‖22 − ‖Φ(A−AT+1,W −W0)‖22
≤

(2α
d
‖M‖op + τ

)√
rankA‖PA(Â−A)‖F +

(2α
d
‖M‖op − τ

)
‖P⊥

A (Â−A)‖∗

+
(2α

d
‖M‖∞ + γ

)√
‖A‖0‖ΘA ◦ (Â−A)‖F +

(2α
d
‖M‖∞ − γ

)
‖Θ⊥

A ◦ (Â−A)‖1

+
( 2α

dT
‖Ξ‖∞ + κ

)√
‖W‖0‖ΘW ◦ (Ŵ −W )‖F +

( 2α

dT
‖Ξ‖∞ − κ

)
‖Θ⊥

W ◦ (Ŵ −W )‖1,
which leads, using (7), to
1

d
‖Φ(Â−AT+1, Ŵ −W0)‖22 +

1

d
‖Φ(Â−A, Ŵ −W )‖22 −

1

d
‖Φ(A−AT+1,W −W0)‖22

≤ 5τ

3

√
rankA‖PA(Â−A)‖F +

5γ

3

√
‖A‖0‖ΘA ◦ (Â−A)‖F +

5κ

3

√
‖W‖0‖ΘW ◦ (Ŵ −W )‖F .

Since Â − A ∈ C2(A, 5, γ/τ) and Ŵ − W ∈ C1(W, 5), we obtain using Assumption 1 and
ab ≤ (a2 + b2)/2:

1

d
‖Φ(Â−AT+1, Ŵ −W0)‖22 +

1

d
‖Φ(Â−A, Ŵ −W )‖22

≤ 1

d
‖Φ(A−AT+1,W −W0)‖22 +

25

18
µ2(A,W )2

(
rank(A)τ2 + ‖A‖0γ2)

+
25

36
µ1(W )2‖W‖0κ2 +

1

d
‖Φ(Â−A, Ŵ −W )‖22,

which concludes the proof of Theorem 2. �

A.3 Proof of Theorem 4

For the proof of (8), we simply use the fact that1dT ‖XT−1(Ŵ − W0)‖2F ≤ E(Â, Ŵ )2 and use
Theorem 3. Then we takeW = W0 in the infimum overA,W .

For (9), we use the fact that sincêW −W0 ∈ C1(W0, 5), we have (see the Proof of Theorem 2),

‖Ŵ −W0‖1 ≤ 6
√
‖W0‖0‖ΘW ◦ (Ŵ −W0)‖F

≤ 6
√
‖W0‖0‖XT−1(Ŵ −W0)‖F /

√
dT

≤ 6
√
‖W0‖0E(Â, Ŵ ),

and then use again Theorem 3. The proof of (10) follows exactly the same scheme. �

11



A.4 Concentration inequalities for the noise processes

The control of the noise termsM andΞ is based on recent developments on concentration inequal-
ities for random matrices, see for instance [24]. Moreover,the assumption on the dynamics of
the features’s noise vector(Nt)t≥0 is quite general, since we only assumed that this process is a
martingale increment. Therefore, our control of the noiseΞ rely in particular on martingale theory.

Proposition 1. Under Assumption 1, the following inequalities hold for anyx > 0. We have

∥∥∥1
d

d∑

j=1

(NT+1)jΩj

∥∥∥
op

≤ σvΩ,op

√
2(x+ log(2n))

d
(17)

with a probability larger than1− e−x. We have

∥∥∥1
d

d∑

j=1

(NT+1)jΩj

∥∥∥
∞

≤ σvΩ,∞

√
2(x+ 2 logn)

d
(18)

with a probability larger than1− 2e−x, and finally

∥∥∥ 1

T + 1

T+1∑

t=1

ω(At−1)N
⊤
t

∥∥∥
∞

≤ σσω

√
2e(x+ 2 log d+ ℓT )

T + 1
(19)

with a probability larger than1− 14e−x, where

ℓT = 2 max
j=1,...,d

log log

(∑T+1
t=1 ωj(At−1)

2

T + 1
∨ T + 1

∑T+1
t=1 ωj(At−1)2

∨ e

)
.

Proof. For the proofs of Inequalities (17) and (18), we use the fact that(NT+1)1, . . . , (NT+1)d are
independent (scalar) subgaussian random variables.

From Assumption 1, we have for anyn × n deterministic self-adjoint matricesXj that
E[exp(λ(NT+1)jXj)] � exp(σ2λ2X2

j /2), where� stands for the semidefinite order on self-adjoint
matrices. Using Corollary 3.7 from [24], this leads for anyx > 0 to

P

[
λmax

( d∑

j=1

(NT+1)jXj

)
≥ x

]
≤ n exp

(
− x2

2v2

)
, wherev2 = σ2

∥∥∥
d∑

j=1

X2
j

∥∥∥
op
. (20)

Then, following [24], we consider the dilation operatorL : Rn×n → R
2n×2n given by

L(Ω) =
(

0 Ω
Ω∗ 0

)
.

We have

∥∥∥
d∑

j=1

(NT+1)jΩj

∥∥∥
op

= λmax

(
L
( d∑

j=1

(NT+1)jΩj

))
= λmax

( d∑

j=1

(NT+1)jL(Ωj)
)

and an easy computation gives

∥∥∥
d∑

j=1

L(Ωj)
2
∥∥∥
op

=
∥∥∥

d∑

j=1

Ω⊤
j Ωj

∥∥∥
op

∨
∥∥∥

d∑

j=1

ΩjΩ
⊤
j

∥∥∥
op
.

So, using (20) with the self-adjointXj = L(Ωj) gives

P

[∥∥∥
d∑

j=1

(NT+1)jΩj

∥∥∥
op

≥ x
]
≤ 2n exp

(
− x2

2v2

)
wherev2 = σ2

∥∥∥
d∑

j=1

Ω⊤
j Ωj

∥∥∥
op
∨
∥∥∥

d∑

j=1

ΩjΩ
⊤
j

∥∥∥
op
,

which leads easily to (17).
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Inequality (18) comes from the following standard bound on the sum of independent sub-gaussian
random variables:

P

[∣∣∣1
d

d∑

j=1

(NT+1)j(Ωj)k,l

∣∣∣ ≥ x
]
≤ 2 exp

(
− x2

2σ2(Ωj)2k,l

)

together with an union bound on1 ≤ k, l ≤ n.

Inequality (19) is based on a classical martingale exponential argument together with a peeling
argument. We denote byωj(At) the coordinates ofω(At) ∈ R

d and byNt,k those ofNt, so that

( T+1∑

t=1

ω(At−1)N
⊤
t

)
j,k

=

T+1∑

t=1

ωj(At−1)Nt,k.

We fix j, k and denote for shortεt = Nt,k andxt = ωj(At). SinceE[exp(λεt)|Ft−1] ≤ eσ
2λ2/2

for anyλ ∈ R, we obtain by a recursive conditioning with respect toFT−1, FT−2, . . . ,F0, that

E

[
exp

(
θ

T+1∑

t=1

εtxt−1 −
σ2θ2

2

T+1∑

t=1

x2
t−1

)]
≤ 1.

Hence, using Markov’s inequality, we obtain for anyv > 0:

P

[ T+1∑

t=1

εtxt−1 ≥ x,

T+1∑

t=1

x2
t−1 ≤ v

]
≤ inf

θ>0
exp(−θx+ σ2θ2v/2) = exp

(
− x2

2σ2v

)
,

that we rewrite in the following way:

P

[ T+1∑

t=1

εtxt−1 ≥ σ
√
2vx,

T+1∑

t=1

x2
t−1 ≤ v

]
≤ e−x.

Let us denote for shortVT =
∑T+1

t=1 x2
t−1 and ST =

∑T+1
t=1 εtxt−1. We want to replacev

by VT from the previous deviation inequality, and to remove the event {VT ≤ v}. To do so,
we use a peeling argument. We takev = T + 1 and introducevk = vek so that the event
{VT > v} is decomposed into the union of the disjoint sets{vk < VT ≤ vk+1}. We introduce

alsoℓT = 2 log log
(∑T+1

t=1
x2
t−1

T+1 ∨ T+1∑T+1

t=1
x2
t−1

∨ e
)

.

This leads to

P

[
ST ≥ σ

√
2eVT (x+ ℓT ), VT > v

]
=

∑

k≥0

P
[
ST ≥ σ

√
2eVT (x+ ℓT ), vk < VT ≤ vk+1

]

=
∑

k≥0

P

[
ST ≥ σ

√
2vk+1(x+ 2 log log(ek ∨ e)), vk < VT ≤ vk+1

]

≤ e−x(1 +
∑

k≥1

k−2) ≤ 3.47e−x.

On{VT ≤ v} the proof is the same: we decompose onto the disjoint sets{vk+1 < VT ≤ vk} where
this timevk = ve−k, and we arrive at

P

[
ST ≥ σ

√
2eVT (x+ ℓT ), VT ≤ v

]
≤ 3.47e−x.

This leads to

P

[ T+1∑

t=1

ωj(At−1)Nt,k ≥ σ
(
2e

T+1∑

t=1

ωj(At−1)
2(x+ ℓT,j)

)1/2
]
≤ 7e−x

for any1 ≤ j, k ≤ d, where we introduced

ℓT,j = 2 log log
(∑T+1

t=1 ωj(At−1)
2

T + 1
∨ T + 1

∑T+1
t=1 ωj(At−1)2

∨ e
)
.

The conclusion follows from an union bound on1 ≤ j, k ≤ d. This concludes the proof of Proposi-
tion 1.
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