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Abstract

This work considers the problem of learning linear Bayesian networks when some of the vari-
ables are unobserved. Identifiability and efficient recovery from low-order observable moments are
established under a novel graphical constraint. The constraint concerns the expansion properties
of the underlying directed acyclic graph (DAG) between observed and unobserved variables in
the network, and it is satisfied by many natural families of DAGs that include multi-level DAGs,
DAGs with effective depth one, as well as certain families of polytrees.

1 Introduction

It is widely recognized that incorporating latent or hidden variables is a crucial aspect of modeling.
Latent variables can provide a succinct representation of the observed data through dimensionality
reduction; the possibly many observed variables are summarized by fewer hidden effects. Further,
they are central to predicting causal relationships and interpreting the hidden effects as unobservable
concepts. For instance in sociology, human behavior is affected by abstract notions such as social
attitudes, beliefs, goals and plans. As another example, medical knowledge is organized into casual
hierarchies of invading organisms, physical disorders, pathological states and symptoms, and only
the symptoms are observed.

In addition to incorporating latent variables, it is also important to model the complex depen-
dencies among the variables. A popular class of models for incorporating such dependencies are the
Bayesian networks, also known as belief networks. They incorporate a set of causal and conditional
independence relationships through directed acyclic graphs (DAG) [36]. They have widespread ap-
plicability in artificial intelligence [13, 19, 31, 32], in the social sciences [9, 12, 30, 37, 38, 51], and as
structural equation models in economics [7, 12,24,38,47,52].

An important statistical task is to learn such latent Bayesian networks from observed data. This
involves discovery of the hidden variables, structure estimation (of the DAG) and estimation of the
model parameters. Typically, in the presence of hidden variables, the learning task suffers from
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(a) Multi-level DAG (b) DAG with effective depth one

Figure 1: Illustrations of multi-level DAGs and DAGs with effective depth one. Observed nodes and
hidden nodes are respectively shown by shaded and white circles. Under the expansion property for
the graph and the linear dependence model (Section 2.2), we prove identifiability of these ensembles
from low order moments of the observed variables.

identifiability issues since there may be many models which can explain the observed data. In order
to overcome indeterminacy issues, one must restrict the set of possible models. We establish novel
criteria for identifiability of latent DAG models using only low order observed moments (second/third
moments). We introduce a graphical constraint which we refer to as the expansion property. Roughly
speaking, expansion property states that every subset of hidden nodes has “enough” number of
outgoing edges, so they have a noticeable influence on the observed nodes, and thus on the samples
drawn from the joint distribution of the observed nodes. This notion implies new identifiability and
learning results for DAG structures. More specifically, we show that under this constraint, some
broad families of DAG models with hidden variables, including multi-level DAGs and DAGs with
effective depth one, which includes (a subset of) trees and polytrees1 satisfy this constraint and
are thus, identifiable from only second and third observed moments. In addition, we propose novel
and efficient algorithms for the learning task which leverage on the ideas from sparse recovery and
dictionary learning [46] as well as from spectral methods for inverse moment problems [4].

2 Model and outline of the results

2.1 Notation

We write ‖v‖p for the standard `p norm of a vector v. Specifically, ‖v‖0 denotes the number of
non-zero entries in v. Also, ‖M‖p refers to the induced operator norm on a matrix M . For a matrix
M and set of indices I, J , we let MI denote the submatrix containing just the rows in I and MI,J

denote the submatrix formed by the rows in I and columns in J . For a vector v, supp(v) represents

1A polytree is a directed acyclic graph where ignoring the directions, the graph is a tree.
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the positions of non-zero entries of v. We use ei to refer to the i-th standard basis element, e.g.,
e1 = (1, 0, . . . , 0). For a matrix M we let Row(M) (similarly Col(M)) denote the span of its rows
(columns). For a set S, |S| is its cardinality. We use the notation [n] to denote the set {1, . . . , n}.
For a vector v, diag(v) is a diagonal matrix with the elements of v on the diagonal. For a matrix M ,
diag(M) is a diagonal matrix with the same diagonal as M .

2.2 Model

We define a DAG model as a pair (G,Pθ), where Pθ is a joint probability distribution, parameterized
by θ, on n variables x := (x1, . . . , xn) that is Markov with respect to a DAG G = (V, E) with
V = {1, . . . , n} [33]. More specifically, the joint probability Pθ(x) factors as

Pθ(x) =
n∏
i=1

Pθ(xi|xPAi), (1)

where PAi := {j ∈ V : (j, i) ∈ E} denotes the set of parents of node i in G.
The learning task involving DAG models can be described as: Given i.i.d. samples generated

from the joint distribution Pθ over xS for some S ⊆ V, recover (some part of) the graph structure G
and estimate the model parameter θ.

We consider DAG G = (Vobs∪Vhid, E) with observed nodes Vobs = {x1, . . . , xn} and hidden nodes
Vhid = {h1, . . . , hk}. Let εi be the noise variable associated to xi, for i = 1, . . . , n and denote the
variance of εi by σ2

εi > 0. Throughout we use the notation h := (h1, . . . , hk), x := (x1, . . . , xn) and
ε := (ε1, . . . , εn). The noise terms ε are assumed to be uncorrelated. The class of models considered
are specified by the following assumptions.

Condition 1 (Linearity). The observed and hidden variables obey the model2

xi =
∑
j∈PAi

aijhj + εi, for i ∈ [n]. (2)

Furthermore, the hidden variables are linearly independent, i.e., with probability one, if
∑

i∈[k] αihi =
0, then αi = 0, for all i ∈ [k].

We note that without a non-degeneracy assumption on the hidden variables there is no hope of
distinguishing different hidden nodes.

Notice that the structure of G is defined by the non-zero coefficients in Eq. (2). Therefore, there
is no edge among the observed nodes. We define A ∈ Rn×k by letting the (i, j) entry be aij if j ∈ PAi
and zero otherwise. We refer to matrix A as the coefficient matrix.

Remark 2.1. The linear relationships described above can be thought of as linear structural equation
models (SEM). In general, an SEM is defined by a collection of equations

zi = fi(zPAi , εi), (3)

with zi be the variables associated to the nodes. Recently, there has been some progress on the
identifiability problem of SEMs in the fully observed setting [26,39,40,44]. This paper can be viewed
as a contribution to the problem of identifiability and learning SEMs with latent variables.

2Without loss of generality, assume that xi, εi, hj are all zero mean.

3



We now describe sufficient conditions under which the linear DAG model with hidden variables
becomes identifiable. Given observations x, note that we can only hope to identify the columns of
matrix A up to permutation because the model is unchanged if one permute the hidden variables
h and the columns of A correspondingly. Moreover, the scale of each column of A is also not
identifiable. To see this, observe that Eq. (2) is unaltered if we both rescale all the coefficients
{aij}j∈[k] and appropriately rescale the variable hi. Without further assumptions, we can only hope
to recover a certain canonical form of A, defined as follows:

Definition 2.2. We say A is in a canonical form if for each j ∈ [k], σ2
hj

= E[h2
j ] = 1. In particular,

the transformation A ← Adiag(σh1 , σh2 , . . . , σhk) and the corresponding rescaling of h place A in
canonical form and the distribution over xi, i ∈ [n], is unchanged.

Furthermore, observe that the canonical A is only specified up to sign of each column since any
sign change of column i does not alter the variance of hi.

We now discuss a rank condition on the coefficient matrix A.

Condition 2 (Rank condition). There exists a fixed partition P of [n] such that |P| = 3, and AI
has full column rank for all I ∈ P.

Since rank(AI) = k, for I ∈ P, we have as a consequence n ≥ |P| k = 3k. Therefore, it essentially
states that the number of hidden nodes should be at most one third of the observed ones. In most
applications, we are looking for a few number of hidden effects that can represent the statistical
dependence relationships among the observed nodes. Thus the rank condition is reasonable in these
cases. As we will see later, due to this assumption we can extract the noise term from the observed
moments.

We proceed by defining the expansion property of a graph which plays a key role in establishing
our identifiability results.

Definition 2.3. Let H(V1,V2) be a bipartite DAG with parts V1 and V2, and edges directed from V1

to V2. We say that H(V1,V2) satisfies the expansion property if for any subset S ⊆ V1, with |S| ≥ 2,
we have |N(S)| ≥ |S| + dmax, where N(S) := {i ∈ V2 : (j, i) ∈ E for some j ∈ S} is the set of the
neighbors of S and dmax is the maximum degree of nodes in V1.

Condition 3 (Graph expansion). Let H(Vhid,Vobs) denote the graph formed by the edges between
Vhid and Vobs. Then, H(Vhid,Vobs) has the expansion property.

The last condition is a generic assumption on the entries of matrix A. We first define the
parameter genericity property for a matrix.

Definition 2.4. We say that matrix M ∈ Rn×k has the parameter genericity property if for any
v ∈ Rk with ‖v‖0 ≥ 2, the following holds true.

‖Mv‖0 > |NM (supp(v))| − | supp(v)|, (4)

where for a set S ⊆ [k], NM (S) := {i ∈ [n] : Mij 6= 0 for some j ∈ S}.

Condition 4 (Parameter genericity). The coefficient matrix A has the parameter genericity property.

This is a mild generic condition. More specifically if the entries of an arbitrary fixed matrix M
are perturbed independently, then it satisfies the above generic property with probability one.
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Remark 2.5. Fix any matrix M ∈ Rn×k. Let Z ∈ Rn×k be a random matrix such that {Zij : Mij 6=
0} are independent random variables, and Zij ≡ 0 whenever Mij = 0. Assume each variable is drawn
from a distribution with uncountable support. Then

P(M + Z does not satisfy Condition 4) = 0. (5)

Remark 2.5 is proved in Appendix A.

2.3 Summary of contributions

We establish identifiability of different classes of linear DAG models from the observed data, and also
propose efficient algorithms for the learning task. In the following, we summarize our identifiability
results and the proposed algorithms.

Identifiability. Our core result is the following.

Core result. Under the model assumptions in Section 2.2, one can identify the coefficient matrix
A from the second order moment E[xx>], without any assumption on the dependence relationships
among the hidden nodes.

This result shows how the graph expansion property enables the identifiability of connectivity
structure between the set of hidden nodes and the set of observed nodes for a general DAG. It is
worth noting that the result is obtained using only the second order moments. If the hidden nodes
obey a Gaussian joint distribution, then so do the observed nodes and the second moment completely
characterizes their joint distribution. But in general, the second moment provides strictly smaller
amount of information than the entire joint distribution. This makes our result robust to the noises
in the observations as it relies on them only through the second moment.

We next consider two ensembles of DAG models, namely multi-level DAGs and DAGs with
effective depth one. Building upon our core result, we show that for these ensembles the induced
model among the hidden nodes is also identifiable.

Multi-level DAGs. This ensemble contains graphs with a hierarchal structure. The nodes of a multi-
level DAG can be partitioned into levels L1, . . . , Lm, such that there is no edge within a layer and
all the edges are between nodes in layer Li and the nodes in the adjacent layers Li−1 and Li+1 (See
Fig. 1(a) for an illustration). Assuming that the induced model between layers Li and Li+1 obey
the conditions in Section 2.2 for i = 1, . . . ,m− 1, we show that the entire model can be learned in a
sequential manner.

DAGs with effective depth one. A DAG has effective depth one if any hidden node has at least one
observed neighbor (See Fig. 1(b) for an illustration). Now suppose that the dependence relationships
among the hidden nodes are also linear and are described as follows:

hj =
∑
`∈PAj

λj`h` + ηj , for j ∈ [k], (6)

where {ηj}j∈[k] denote the noise terms. For models in this class, we use Excess Correlation Analysis
(ECA) [4] to learn the model from the third order moment of the observed variables. Here, we
assume that the noise variables at the hidden nodes are non-Gaussian (e.g., they have non-zero third
moment or excess kurtosis).

Our presentation focuses on using exact (population) observed moments to emphasize the cor-
rectness of the methodology. However, “plug-in” moment estimates can be used with sampled data.
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(a) Full ternary tree (b) Caterpillar tree

Topics

Word counts
in a document

(c) Graph representation for topic models

Figure 2: Concrete examples of graphs from the ensembles of multi-level DAGs and DAGs with
effective depth one. Observed nodes and hidden nodes are respectively shown by shaded and white
circles. Using the results of this paper, these graphs are identifiable, under the linear dependence
model (Section 2.2), from second- and third-order moments of the observed variables.

To partially address the statistical efficiency of our method, note that higher-order empirical mo-
ments generally have higher variance than lower-order empirical moments, and therefore are more
difficult to reliably estimate. Our techniques only involve low-order moments (up to third order).
A precise analysis of sample complexity involves standard techniques for dealing with sums of i.i.d.
random matrices and tensors as in [4] and is left as a future study.

Learning algorithm. The above results already imply identifiability of the aforementioned DAG
models through exhaustive search. We also present some conditions on the coefficient matrix A,
under which we can efficiently learn the columns of A from the second order moment, by solving a
set of convex optimization problems. This leads to efficient algorithms for learning multi-level DAGs
and DAGs with effective depth one (Algorithm 1 and Algorithm 2).

Examples. It is useful to consider some concrete examples of multi-level DAGs and DAGs with
effective depth one, which satisfy the expansion property. Using the results of this paper, under the
rank condition and the parameter genericity property for matrix A, these models are identifiable.

Full d-regular trees. These are tree structures in which every node other than the leaves has d
children. These are included in the ensemble of multi-level DAGs and it is immediate to see that
for d ≥ 3, the model can be identified under the described model in Section 2.2. (Note that d ≥ 2
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suffices for expansion property but d ≥ 3 is necessary for the rank condition). See Fig. 2(a) for an
illustration of a full ternary tree with latent variables.

Caterpillar trees. These are tree structures in which all the leaves are within distance one of a central
path. See Fig. 2(b) for an illustration. These structures have effective depth one. Let dmax and dmin

respectively denote the maximum and the minimum number of leaves connected to a fixed node on
the central path. It is immediate to see that if dmin ≥ dmax/2 + 1, the structure has the expansion
property.

Random bipartite graphs. Consider bipartite graphs with hidden nodes in one part and observed
nodes in the other part. Each edge (between the two parts) is included in the graph with probability
θ, independent from every other edge. It is easy to see that, for any set S ⊆ [k], the expected number
of its neighbors is : E|N(S)| = n(1− (1− θ)|S|). Also, the expected degree of the hidden nodes is θn.
Now, by applying a Chernoff bound, one can show that these graphs have the expansion property
with high probability, if k ≤ θn/2, i.e., with probability converging to one as n→∞.

Application to correlated topic models. An important application of the results of this paper
is in estimating topic models with correlated topics. Topic models are a popular family of mixture
models that incorporate latent variables, the topics, to explain the observed co-occurrences of words
in documents. Each document has a mixture of active topics and each active topic determines the
occurrence of words in the document. A topic model can be viewed as a bipartite DAG with topics in
one part and the observed nodes in the other part. See Fig. 2(c) for an illustration. (As an example,
one may think of the i-th observed variable as the word counts in the i-th sentence of a document).
Using this representation, estimating the topics from the document is exactly the learning problem
of the corresponding DAG. Existing work on estimating topic models provide results for certain
distributions over the topics. For instance, in independent component analysis (ICA), the topics are
assumed to be independent, while in Latent Dirichlet Allocation (LDA), a Dirichlet prior is assigned
to the distribution of topics in documents. However, it has been observed empirically that correlated
topic models provide better fit for document modeling [10, 34]. A popular correlated topic model,
termed as Pachinko allocation involves multi-level DAGs for modeling word dependencies. We can
now efficiently learn a rich class of similar correlated topic models.

It is convenient to discuss a concrete example which further showcases the applicability of our
results for topic models. Consider the linear model as described by Eqs. (2),(6) and suppose that the
noise variables are independently Poisson random variables and all hidden and observed variables are
Poisson. Note that sum of independent Poisson random variables is also Poisson, and therefore this
is a valid model. This scenario is readily applicable for topic modeling since we can interpret each
observed Poisson variable as specifying the count of a certain word, and each hidden Poisson variable
as giving the count of a certain topic, and there can be arbitrary dependencies among the hidden
topics. Prior to this work, even basic parameter and structural identifiability of such correlated topic
models was not known. Our work gives, for the first time, a computationally efficient estimator that
relies on estimation using only low-order moments.

2.4 Our techniques

Our proof techniques rely on ideas and tools developed in dictionary learning, matrix decomposition,
and method of moments. We briefly explain our techniques and their relations to these areas.

Matrix decomposition into diagonal and low-rank parts. To prove our core result, we first
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observe that under the linear model, E[xx>] is the sum of a low-rank matrix and a diagonal one:

E[xx>] = AE[hh>]A> + E[εε>].

We prove that under the rank condition (Condition 2), E[xx>] can be decomposed into its low-
rank component AE[hh>]A> and its diagonal component E[εε>]. This means that we can remove
the noise contribution from the second order moment. Moreover, rank(AE[hh>]A>) = k gives the
number of hidden nodes. We propose a simple algorithm (Subroutine) for this decomposition.

It should be noted that additive matrix decompositions into low-rank and diagonal (or sparse)
terms have been considered in previous work [16, 27, 43]. Using the techniques of [43], we can relax
Condition 2 to k ≤ n/2, but only by imposing additional strong incoherence conditions on the
low-rank component.

Dictionary learning. We proceed by showing that using the graph expansion property (Condi-
tion 3), one can recover A from the low-rank part AE[hh>]A>, obtained from the decomposition
of the observed covariance matrix, as described above. To prove this claim, we leverage the ideas
developed in [46] for the dictionary learning problem. In [46], the authors consider the problem of
learning sparsely used dictionaries with an invertible dictionary and a random, sparse coefficient ma-
trix, Bernoulli-Gaussian and Bernoulli-Radamacher models. They establish that the dictionary and
the coefficient matrix can be learned from exact measurements. The gist of the idea is that under
the above conditions, the row space of the coefficient matrix is the same as that of the measurements
matrix. The rows of the coefficient matrix are then the sparsest vectors in the corresponding space.

Notice that here we are in the same situation. Since E[hh>] and A have full column rank, we
have Col(A) = Col(AE[hh>]A>). However, in contrast to the setting in [46], the coefficient matrix
A is not generated from a probabilistic model. We introduce the graph expansion property as the
underlying notion which makes the recovery of A possible. In fact, it can be shown that the considered
probabilistic models in [46], possess this property almost surely. Our core result (identifiability of
A) is established by showing that, under the expansion property for the model, the columns of A are
the sparsest vectors in Col(AE[hh>]A>).

Method of moments. For DAGs with effective depth one, observe that the hidden variables are
related to each other and to the noise terms {ηj}j∈[k] via linear equations (6). Define Λ ∈ Rk×k by
letting the (i, j) entry be λij if j ∈ PAi and zero otherwise. Solving for the hidden variables hj , we
have h = (I − Λ)−1η, with η := (η1, . . . , ηk). The observed variables are also related to the hidden
ones via the coefficient matrix A. The idea is to consider an equivalent DAG model obtained by
suppressing the hidden nodes hj and treating the noise terms ηj as the new uncorrelated topics.
The observed variables xi are then related to the new topics through the matrix A(I − Λ)−1. Next,
we apply ECA method [4] to learn A(I − Λ)−> from the second and third order moments of the
observed variables. ECA is based on two singular value decompositions: the first SVD whitens the
data (using second moment) and the second SVD uses the third moment to find directions which
exhibit information that is not captured by the second moment. Finally, in order to identify the
dependence structure among the hidden nodes (matrix Λ), we use the expansion property to extract
A and Λ from A(I − Λ)−>. The high-level idea is depicted in Fig. 3.

2.5 Related work

The problem of identifiability and learning graphical models from distributions has been the object of
intensive investigation in the past years and has been studied in different research communities. This
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x1 x2 x3 x4 x5 x6 x7 x8 x9

h1 h2 h3

x1 x2 x3 x4 x5 x6 x7 x8 x9

η1 η2 η3

ECA Learn

A(I − Λ)−1

Expansion
property Extract

A and Λ

Figure 3: The high-level idea of the technique used for learning DAGs with effective depth one. In
the leftmost graph (original DAG) the hidden nodes depend on each other through the matrix Λ and
the observed variables depend on the hidden nodes through the coefficient matrix A. We consider
an equivalent DAG with new uncorrelated topics ηj (these are in fact the noise terms at the hidden
nodes). Here, the observed variables depend on the hidden ones through the matrix A(I − Λ)−1.
Applying ECA method, we learn this matrix from the (second and third order) observed moments.
Finally, using the expansion property of the connectivity structure between the hidden part and the
observed part, we extract A and Λ from A(I − Λ)−1.

problem has proved important in a vast number of applications, such as computational biology [22,42],
economics [7, 12, 24, 52], sociology [9, 12, 30, 51], and computer vision [19, 32]. The learning task has
two main ingredients: structure learning and parameter estimation.

Structure estimation has been extensively studied in the recent years. It is well known that
maximum likelihood estimation in fully observed tree models is tractable [20]. However, for general
models, structure learning is NP-hard even when there are no hidden variables. The main approaches
for structure estimation are score-based methods, local tests and convex relaxation methods. Score-
based methods such as [17] find the graph structure by optimizing a score, like Bayesian Independence
criterion (BIC), in a greedy manner. Local test approaches attempt to build the graph based on local
statistical tests on the samples, both for directed and undirected graphical models [1,5,14,25,29,48].
Convex relaxation approaches have also been considered for structure estimation, e.g. [35, 41].

In the presence of latent variables, structure learning becomes more challenging. A popular class
of latent variable models are latent trees, for which efficient algorithms have been developed [3,18,21,
23]. Recently, approaches have been proposed for learning (undirected) latent graphical models with
long cycles in certain parameter regimes [6]. In [15], latent Gaussian graphical models are estimated
using convex relaxation approaches. The authors in [45] study linear latent DAG models and propose
methods to (1) find clusters of observed nodes that are separated by a single latent common cause;
and (2) find features of the Markov Equivalence class of causal models for the latent variables. Their
model allows for undirected edges between the observed nodes. In [2], equivalence class of DAG
models is characterized when there are latent variables. However, the focus is on constructing an
equivalence class of DAG models, given a member of the class. In contrast, we focus on developing
efficient learning methods for latent DAGs.

For parameter estimation with hidden variable models, the traditional approach is expectation
maximization (EM) algorithm, which finds a local maximizer of the likelihood. Unfortunately, op-
timality and recovery guarantees are generally lacking for EM, even when the model is correct.
Another approach is to constrain the dependency structure among the hidden nodes. For instance,
in independent component analysis (ICA) [28], it is assumed that the latent variables obey a product
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distribution and hence in the corresponding graph model there is no edge between the latent variables
(There are only directed edges from latent nodes to the observed nodes). Several generalizations of
ICA have also been developed where clusters of dependent components are learned, e.g. [8] considers
tree component analysis where the latent nodes form a tree model; [49] considers independent sub-
space analysis; and [4] considers latent variables to be drawn from latent Dirichlet allocation (LDA),
relevant in topic modeling [11]. These approaches are based on the method of moments, where the
observed moments are matched to those specified by the model. In this paper, we use ideas from the
method of moments to establish identifiability and efficient recovery for DAG models.

3 Main results

In this section, we state our identifiability results and algorithms for learning the DAG models with
latent variables.

3.1 Learning the coefficient matrix A

Theorem 3.1. Let Σ := E[xx>] be the second order moment of the observed variables. For the model
described in Section 2.2 (Conditions 1, 2, 3, 4), all columns of A are identifiable from Σ.

Theorem 3.1 is proved in Section 4.1. As shown in the proof, columns of A are in fact the
sparsest vectors in the space Col(AE[hh>]A>). This result already implies identifiability of A via an
exhaustive search, which is an interesting result in its own right. The following theorem provides some
conditions under which the columns of A can be identified by solving a set of convex optimization
problems. Before stating the theorem, we need to establish some notations.

For i ∈ [n], we define Ni := {j ∈ [k] : Aij 6= 0} and N2
i := {l ∈ [n] : Alj 6= 0 for some j ∈ Ni}.

Similarly, for j ∈ [k], define Nj := {i ∈ [n] : Aij 6= 0} and N2
j := {l ∈ [k] : Ail 6= 0 for some i ∈ Nj}.

We use superscript c to denote the set complement.

Theorem 3.2. Suppose that in each row of A, there is a gap between the maximum and the second
maximum absolute values. For i ∈ [n], let πi be a permutation such that |ai,πi(1)| ≥ |ai,πi(2)| ≥
· · · ≥ |ai,πi(k)|, and |ai,πi(1)|/|ai,πi(2)| ≤ 1 − γi, for some γi > 0. Further suppose that [k] ⊆
{π1(1), . . . , πn(1)}. In words, each column contains at least one entry that has the maximum ab-
solute value in its row. If the following conditions hold true for i ∈ [n], then Algorithm 1 returns
the rows of A in canonical form.

(i) ‖A(N2
i )
c,(Ni)c

v‖1 > ‖AN2
i ,(Ni)

c v‖1 for all non-zero vectors v ∈ R|(Ni)c|.

(ii) ‖A(Nj)c,Ni\j v‖1 > ‖ANj ,Ni\j v‖1 + (1 − γ)‖ANj ,j‖1‖v‖1 for all j ∈ Ni and all non-zero vectors

v ∈ R|Ni|−1.

Theorem 3.2 is proved in Section 4.2. Algorithm 1 is essentially ER-SpUD presented in [46] for
exact recovery of sparsely-used dictionaries; but the technical result and application are novel.

According to Theorem 3.1, we can learn the coefficient matrix A of the model without any
assumption on the dependence relationships among the hidden nodes. (We only need the non-
degeneracy assumption discussed in Condition 1 which requires that the hidden variables be linearly
independent with probability one.)

10



Subroutine: Decomposition of a matrix into its low-rank and diagonal parts.

Input: Matrix C = AB> +D, with A,B ∈ Rn×k, D ∈ Rn×n diagonal, and partition P of [n].
Output: Diagonal part D and low-rank part L = AB>.

1: for each I ∈ P do
2: Choose distinct J,K ∈ P\{I}.
3: Let UI ∈ R|I|×k be the matrix of left singular vectors of CI,J .
4: Let VJ ∈ R|J |×k be the matrix of right singular vectors of CI,J .
5: Let UK ∈ R|K|×k be the matrix of left singular vectors of CK,J .
6: Set AIB

>
I = CI,JVJ(U>KCK,JVJ)−1U>KCK,I .

7: Set DI,I = CI,I −AIB>I .
8: return D and L = C −D.

Algorithm 1: Recovering columns of coefficient matrix A from the second order moment Σ.

Input: Second order moment of the observed variables Σ.
Output: Columns of A up to permutation.

1: Find a partition P of [n] such that |P| = 3 and rank(ΣI,J) = k for distinct I, J ∈ P.
2: Let L be the low-rank part returned by Subroutine(Σ,P).
3: for each i ∈ [n] do
4: Solve the optimization problem

min
w
‖L1/2w‖1 subject to (e>i L

1/2)w = 1.

5: Set si = L1/2w, and let S = {s1, . . . , sn}.
6: for each j = 1, . . . , k do
7: repeat
8: Let vj be an arbitrary element in S.
9: Set S = S\{vj}.

10: until rank([v1| · · · |vj ]) = j
11: Set Ã = [v1| · · · |vk].
12: Let B̃ be a left inverse for Ã, i.e., B̃Ã = Ik×k.
13: return Columns of Ã(diag(B̃LB̃>))1/2.
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Note that the coefficient matrix A does not completely specify the distribution, as the hi’s are
not necessarily statistically independent, and we can hope to learn the correlation structure among
the hi’s. We next consider two families of DAG models, namely multi-level DAGs and DAGs with
effective depth one. For these families, we proceed further and prove identifiability of the entire
model.

3.2 Multi-level DAGs

Definition 3.3. A multi-level DAG model is a model with the following graph structure. The nodes
of the graph can be partitioned into levels L1, . . . , Lm such that there is no edge between the nodes
within one layer and all the edges are between nodes in adjacent layers, (Li, Li+1) for i ∈ [m − 1].
Furthermore, the edges are directed from Li to Li+1. The nodes in layer Lm correspond to the
observed nodes and other layers contain the hidden nodes.

Next theorem concerns identifiability of linear multi-level DAGs. More specifically, consider a
multi-level DAG model and let Gi be the induced graph with nodes Li ∪ Li+1 and suppose that the
induced model between levels Li and Li+1 satisfies the model conditions described in Section 2.2
with coefficient matrix Ai, for i ∈ [m − 1]: Ai has the rank condition (Condition 2) and parameter
genericity property (Condition 4), and (bipartite) graph Gi has the expansion property (Condition 3).

Theorem 3.4. Consider a multi-level DAG with levels L1, . . . , Lm and suppose that the induced
model between layers Li and Li+1 satisfies the model conditions described in Section 2.2 with coef-
ficient matrix Ai, for i ∈ [m − 1]. Then all columns of Ai are identifiable for i ∈ [m − 1] from the
second order moment of the observed variables Σ. Therefore, the entire DAG is identifiable up to
permuting the nodes within each level.

Theorem 3.4 is proved in Section 4.3.

Remark 3.5. By definition of multi-level DAG, the hidden nodes in level L1 are independent. Now
consider the case that the nodes in L1 have arbitrary dependence relationships. By using the same
argument as in the proof of Theorem 3.4, we can still learn all the coefficient matrices Ai and the
second order moment of the nodes in L1.

3.3 DAGs with effective depth one

Definition 3.6. The effective depth of a DAG model with hidden nodes is the maximum graph
distance between a hidden node and its closest observed node.

In particular, in a DAG with effective depth one every hidden node has at least one observed
neighbor. Recall that the observed and the hidden nodes obey the linear model

xi =
∑
j∈PAi

aijhj + εi, for i ∈ [n]. (7)

Assume further that the hidden variables obey the linear model

hj =
∑
`∈PAj

λj`h` + ηj , for j ∈ [k]. (8)

12



Let Λ ∈ Rk×k be the matrix with λij at the (i, j) entry if j ∈ PAi and zero everywhere else.
As described in Section 2.2, without loss of generality, we assume that hidden variables hj , the

observed variables xi and the noise terms εi, ηj are all zero mean. We also denote the variances of εi
and ηj by σ2

εi and σ2
ηj , respectively. Let µεi and µηj respectively denote the third moment of εi and

ηj , i.e., µεi := E[ε3
i ] and µηj := E[η3

j ]. Define the skewness of ηj as:

γηj :=
µηj
σ3
ηj

. (9)

Finally, denote the second and third order correlations of the observed variables as:

Σ := E[xx>],

Ψ := E[x⊗ x⊗ x],
(10)

where ⊗ denotes the tensor product. It is convenient to consider the projection of Ψ to a matrix as
follows:

Ψ(ζ) := E[xx>〈ζ, x〉],

where 〈·, ·〉 denotes the standard inner product.

Theorem 3.7. Consider a DAG model with effective depth one, which satisfies the model conditions
described in Section 2.2 and the hidden variables are related through linear equations (8). If the noise
variables ηj have non-zero skewness for j ∈ [k], then the DAG model is identifiable from Σ and Ψ(ζ),
for an appropriate choice of ζ. Furthermore, under the assumptions of Theorem 3.2, Algorithm 2
returns matrices A and Λ up to a permutation of hidden nodes.

Theorem 3.7 is proved in Section 4.4. In Theorem 3.7, we prove identifiability of DAGs with
effective depth one, from the second and third order moments. A natural question is what can be
done if only the second order moment is provided. The following remark states that if an oracle gives
a topological ordering of the DAG structure then the model can be learned only through the second
order moment and there is no need to the third order moment.

Remark 3.8. A topological ordering of a DAG is a labeling of the nodes such that, for every directed
edge (j, i), we have j < i. It is a well known result in graph theory that a directed graph is a DAG
if and only if it admits a topological ordering. Now, consider a DAG model with effective depth
one and suppose that an oracle provides us with a topological ordering of the induced DAG on the
hidden nodes, i.e., for any labeling of the hidden nodes the oracle returns a permutation of the labels
which is faithful to a topological ordering of the DAG. Then, the DAG model (matrices A and Λ) are
identifiable from only the second order moment Σ.

Remark 3.8 is proved in Appendix D.

Remark 3.9 (Learning fully-observed DAGs). An interesting and immediate application of the
technique used in the proof of Theorem 3.7 is in learning fully-observed DAGs. Consider an arbitrary
fully-observed linear DAG:

xi =
∑
i∈PAi

λijxj + ηi, for i ∈ [n], (11)

and suppose that the noise variables ηi have non-zero skewness. Then, applying the same argument
as in the proof of Theorem 3.7, we can learn the matrix (I − Λ)−1 (and hence Λ) from the second
and third order moments.
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Algorithm 2: Learning DAGs with effective depth one.

Input: Vector θ ∈ Rk, observable moments Σ and Ψ as defined in Eq. (10).
Output: Columns of A, matrix Λ (in a topological ordering).

1: Part 1: Decomposition of Σ.
2: Find a partition P of [n] such that |P| = 3 and rank(ΣI,J) = k for distinct I, J ∈ P.
3: Let LΣ and DΣ be the low-rank and the diagonal parts returned by Subroutine(Σ,P).
4: Part 2: ECA.
5: Find a matrix U ∈ Rn×k such that Col(U) = Col(LΣ).
6: Find V ∈ Rk×k such that V >(U>LΣU)V = Ik×k. Set W = UV .
7: Find a partition P of [n] such that |P| = 3 and rank(Ψ(Wθ)I,J) = k for distinct I, J ∈ P. Let

LΨ and DΨ be the low-rank and the diagonal parts returned by Subroutine(Ψ(Wθ),P).
8: Let Ω be the set of (left) singular vectors, with unique singular values, of W>LΨW .
9: Let S ∈ Rn×k be a matrix with columns {(W+)>ω : ω ∈ Ω}, where W+ = (W>W )−1W>.

10: Part 3: Finding A and Λ.
11: Let Â = Algorithm 1(Σ).
12: Let B̂ be a left inverse of Â. Let C = B̂S.
13: Reorder the rows and columns of C to make it lower triangular. Call it C̃.
14: return Columns of Â and Λ̂ = I − diag(C̃) C̃−1.

3.4 Remark on finding the partition P

The rank condition for matrix A ensures the existence of a partition P of [n], such that, |P| = 3 and
AI ∈ Rn×k has full column rank for all I ∈ P. However, we are not provided with such a partition
and therefore in Algorithm 1 and Algorithm 2 we need to search for P. The complexity order of
this searching step is nk. Here, we show that under an incoherence assumption about A, a random
partitioning of its rows into three groups has the desired property, with fixed positive probability.

Definition 3.10. Let A = USV > be a thin singular value decomposition of A, where U ∈ Rn×khas
orthonormal columns, S = diag(σ1(A), . . . , σk(A)), and V ∈ Rk×k is orthogonal. Define the incoher-
ence number of A as:

cA := max
j∈[n]

{
n

k
‖U>ej‖22

}
. (12)

Lemma 3.11. Fix ` ∈ [n], and consider ` random submatrices A1, A2, . . . , A` of A obtained by the
following process: for each row of A, independently choose one of the ` submatrices uniformly at
random, and put the row in that submatrix. Fix δ ∈ (0, 1). Then,

P
{
σk(Av) ≥ σk(A)/(2

√
`),∀v ∈ [`]

}
≥ 1− δ, (13)

provided that cA ≤ 9
32 ·

n
k` ln k`

δ

.

Lemma 3.11 is proved in Appendix E. Using this lemma with ` = 3, we obtain the following. For
A ∈ Rn×k with full column rank and a random partitioning P of its rows into three groups, all the
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submatrices AI , I ∈ P are full rank with probability at least 1− δ, provided that

cA ≤
3

32
· n

k ln 3k
δ

. (14)

4 Proof of the theorems

4.1 Proof of Theorem 3.1

Observe that

Σ = E[xx>] = E[(Ah+ ε)(Ah+ ε>)]

= AE[hh>]A> + E[εε>].
(15)

Since the hidden variables are linearly independent, E[hh>]is full rank. Otherwise, v>E[hh>]v = 0
for some non-zero vector v. This implies that E[‖h>v‖2] = 0 and so h>v = 0 which leads to a
contradiction. Find a partition P of [n], such that |P| = 3, and rank(ΣI,J) = k for all distinct
I, J ∈ P. (Note that rank(ΣI,J) = rank(AIE[hh>]A>J ) and by rank condition, there exists such a
partition P). We first show that Subroutine(Σ,P) returns AE[hh>]A> and the diagonal matrix
E[εε>].

Lemma 4.1. Let C = AB> +D, with A,B ∈ Rn×k and D ∈ Rn×n a diagonal matrix. Suppose that
for a fixed partition P of [n], with |P| = 3, all the submatrices AI and BI have full column rank k,
for all I ∈ P. Then, Subroutine(C) returns AB> and D.

The proof of Lemma 4.1 is deferred to Appendix B.
Given that E[hh>] and A have full column rank, we have Col(A) = Col(AE[hh>]A>). Let

{u1, . . . , uk} be any basis of Col(AE[hh>]A>) containing vectors with k smallest `0 norm. Since all
the columns of A have at most dmax non-zero entries, we have maxi∈[k] ‖ui‖0 ≤ dmax, by choice of
vectors ui. Next we show that due to the graph expansion property (Condition 3) and the parameter
genericity property (Condition 4), vectors ui are (scaled) columns of A. Observe that any vector ui
can be represented by a linear combination of columns of A, say ui = Av. If ‖v‖0 ≥ 2, then

‖ui‖0 = ‖Av‖0 > |NA(supp(v))| − | supp(v)| ≥ dmax,

where the first inequality follows from parameter genericity property and the second one follows from
the expansion property. This leads to a contradiction. Therefore, ‖v‖0 = 1, and ui is scaled version
of a column of A. Since ui are linearly independent, different ui correspond to different columns of
A. Let Ã = [u1| · · · |uk]. Then, there exists a permutation matrix Π and a diagonal matrix ∆ such
that Ã = AΠ∆. We recover the scaling matrix ∆ using the fact that A is in canonical form.

Let B̃ be a left inverse of Ã. We have

B̃AE[hh>]A>B̃> = ∆−1Π−1E[hh>]Π−>∆−>. (16)

Consequently,

diag(B̃AE[hh>]A>B̃>) = diag(∆−1Π−1E[hh>]Π−>∆−>) = ∆−2, (17)

where the last step follows from diag(E[hh>]) = Ik×k as A is in a canonical form. Finally,

Ã(diag(B̃AE[hh>]A>B̃>))1/2 = Ã∆−1 = AΠ. (18)

Therefore, we have identified all columns of A.
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4.2 Proof of Theorem 3.2

Recall that Σ = AE[hh>]A> + E[εε>]. Using Lemma 4.1, Subroutine(Σ,P) (in the second step
of Algorithm 1) returns the low-rank part L = AE[hh>]A> and the diagonal part E[εε>]. The
following lemma shows that vectors si, returned by the loop (steps (3)− (5)), are scaled multiples of
the columns of A.

Lemma 4.2. Let A ∈ Rn×k be a given matrix with rank k, and let L1/2 ∈ Rn×k be such that
L1/2 = AM , for an invertible M ∈ Rk×k. (Equivalently Col(A) = Col(L)). Fix i ∈ [n] and consider
the following optimization problem:

min
w

‖L1/2w‖1 subject to (e>i L
1/2)w = 1. (19)

Under the following conditions, si = L1/2w is a scaling of the πi(1)-th column of A. (Recall that
πi(1) is the index of the entry with maximum absolute value in the i-th row of A).

(i) ‖A(N2
i )
c,(Ni)c

v‖1 > ‖AN2
i ,(Ni)

c v‖1 for all non-zero vectors v ∈ R|(Ni)c|.

(ii) ‖A(Nj)c,Ni\j v‖1 > ‖ANj ,Ni\j v‖1 + (1 − γ)‖ANj ,j‖1‖v‖1 for all j ∈ Ni and all non-zero vectors

v ∈ R|Ni|−1.

Proof (Lemma 4.2). Consider the following equivalent formulation of Problem (19) obtained by the
change of variables z = Mw, b> = (e>i L

1/2)M−1:

min
z

‖Az‖1 subject to b>z = 1. (20)

Observe that b> is the i-th row of A. Denote the solution to Problem (19) by z∗. We aim to prove
that z∗ is supported on {πi(1)}. We prove the desired result in two steps:

Claim 4.3. Under Condition (i), we have supp(z∗) ⊆ supp(b).

Claim 4.4. Under Condition (i)− (ii), we have supp(z∗) = {πi(1)}.

Proof (Claim 4.3). Notice that b> = e>i A, and so supp(b) = Ni. Define z0 ∈ Rk by z0(j) := z∗(j)
for all j ∈ supp(b), and z0(j) := 0 for all j /∈ supp(b). Also, let z1 := z∗ − z0. Therefore, z0 is also a
feasible solution to Problem (20), since b>z0 = b>z∗.

If z1 6= 0, then

‖Az∗‖1 = ‖AN2
i ,[k] z∗‖1 + ‖A(N2

i )
c,[k] z∗‖1

= ‖AN2
i ,[k] (z0 + z1)‖1 + ‖A(N2

i )
c,[k] z1‖1

≥ ‖AN2
i ,[k]z0‖1 − ‖AN2

i ,[k]z1‖1 + ‖A(N2
i )
c,[k] z1‖1

= ‖Az0‖1 − ‖AN2
i ,[k]z1‖1 + ‖A(N2

i )
c,[k] z1‖1

> ‖Az0‖1,

where the last inequality follows from Condition (i) and the fact supp(z1) ⊆ (Ni)
c. Therefore, z0 is a

feasible solution with smaller objective value, which contradicts the optimality of z∗. Therefore we
conclude that z1 = 0, and hence supp(z∗) ⊆ supp(b).
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Proof (Claim 4.4). By Claim 4.3, supp(z∗) ⊆ supp(b) = Ni. To lighten the notation, let j = πi(1),
and define z0 := (e>j z∗)ej and z1 := z∗ − z0. Suppose for sake of contradiction that z1 6= 0. Since
b>z∗ = 1, we have z0 = ((1− b>z1)/bj) ej . Therefore (using the triangle inequality twice),

‖Az∗‖1 = ‖ANj ,[k]z∗‖1 + ‖A(Nj)c,[k]z∗‖1
= ‖ANj ,[k](z0 + z1)‖1 + ‖A(Nj)c,[k]z1‖1
≥ ‖ANj ,[k]z0‖1 − ‖ANj ,[k]z1‖1 + ‖A(Nj)c,[k]z1‖1
= ‖ANj ,[k]((1− b>z1)/bj) ej‖1 − ‖ANj ,[k]z1‖1 + ‖A(Nj)c,[k]z1‖1
≥ (1/|bj)‖ANj ,[k]ej‖1 − |b>z1/bj |‖ANj ,[k]ej‖1 − ‖ANj ,[k]z1‖1 + ‖A(Nj)c,[k]z1‖1.

Since z1(j) = 0, we have |b>z1| ≤ |b|πi(2)‖z‖1 by Hölder’s inequality, and therefore,

|b>z1|
|bj |

≤
|b|πi(2)‖z1‖1
|b|j

≤ (1− γi)‖z1‖1.

Moreover, by Condition (ii) and the fact supp(z1) ⊆ Ni \ j,

‖ANcj ,[k]z1‖1 > ‖ANj ,[k]z1‖1 + (1− γi)‖ANj ,j‖1‖z1‖1.

Putting the last three displayed inequalities together gives

‖Az∗‖1 > (1/|bj |)‖ANj ,[k]ej‖1 = ‖A(ej/bj)‖1.

Since ej/bj is a feasible solution, the above strict inequality contradicts the optimality of z∗. Therefore
we conclude that z1 = 0, and z∗ = z0 = ej/bj .

Notice that si = L1/2w = AMw = Az∗ and since supp(z∗) = {πi(1)}, si is a scaled multiple of
the πi(1)-th column of A. This completes the proof of Lemma 4.2.

Now, we are ready to prove the theorem.
Given that Conditions (i) − (ii) hold for all i ∈ [n], using Lemma 4.2, the set S = {s1, . . . , sn}

consists of scaled multiples of the columns of A. Moreover, since [k] ⊆ {π1(1), . . . , πn(1)}, S contains a
scaled multiple of each column of A. In the loop (steps (6)−(10)), we choose a linearly independent set
{v1, . . . , vk} ⊆ S. These are the (scaled multiples of the) columns of A. Hence, letting Ã = [v1| · · · |vk],
there exists a diagonal matrix ∆ ∈ Rk×k and a permutation matrix π ∈ Rk×k such that Ã = AΠ∆.
Let B̃ be a left inverse of Ã. We have

B̃LB̃> = B̃AE[hh>]A>B̃> = ∆−1Π−1E[hh>]Π−>∆−>. (21)

Consequently,

diag(B̃LB̃>) = diag(∆−1Π−1E[hh>]Π−>∆−>) = ∆−2, (22)

where the last step follows from diag(E[hh>]) = Ik×k as A is in a canonical form. Finally,

Ã(diag(B̃LB̃>))1/2 = Ã∆−1 = AΠ. (23)

Therefore, Algorithm 1 returns all the columns of A.
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4.3 Proof of Theorem 3.4

We identify the matrices Ai (up to permutation of their columns) in a sequential manner. Let hLi
denote the vector formed by the hidden variables in level Li, for i ∈ [m − 1]. Also, let εLi be the
noise vector formed by the noise variables associated to the hidden nodes in layer Li, for i ∈ [m− 1].
Write

Σ = Am−1E[hLm−1h
>
Lm−1

]A>m−1 + E[εLm−1ε
>
Lm−1

]. (24)

By applying Theorem 3.1, we can identify the columns of Am−1. Equivalently, we recover
Ãm−1 = Am−1Πm−1 for some permutation matrix Πm−1. Let B̃m−1 be a left inverse of Ãm−1.
As demonstrated in the proof of Theorem 3.1, we can decompose Σ into its low-rank and diagonal
parts. Therefore we have access to Am−1E[hLm−1h

>
Lm−1

]A>m−1. Now, notice that

B̃m−1Am−1E[hLm−1h
>
Lm−1

]A>m−1B̃
>
m−1 = Π−1

m−1E[hLm−1h
>
Lm−1

]Π−>m−1. (25)

In words, we can recover the second order moment of the hidden variables in level Lm−1, up to
a permutation of the nodes within this layer. Using the same technique sequentially, we can recover
all the columns of Ai for i ∈ [m − 1] and thus the entire DAG is identifiable up to permutation of
hidden nodes within each level.

4.4 Proof of Theorem 3.7

Let η := (η1, . . . , ηk) and ε := (ε1, . . . , εn). Using the model description, we have

x = A(I − Λ)−1η + ε. (26)

Define M := A(I − Λ)−1 ∈ Rn×k. Then

Σ = E[xx>]

= E[(Mη + ε)(Mη + ε)>]

= ME[ηη>]M> + E[εε>]

= M diag(σ2
η1 , . . . , σ

2
ηk

)M> + diag(σ2
ε1 , . . . , σ

2
εn).

(27)

Given that A satisfies the rank condition, it is immediate to see that M diag(ση1 , . . . , σ
2
ηk

) also
satisfies the rank condition. Therefore, applying Lemma 4.1, we can decompose Σ into its low-rank
part (LΣ) and its diagonal part (DΣ), where

LΣ = M diag(σ2
η1 , . . . , σ

2
ηk

)M>, (28)

DΣ = diag(σ2
ε1 , . . . , σ

2
ε1). (29)

Since A has full column rank, U>LΣU ∈ Rk×k also has full rank; hence, the whitening step (Part
2 in Algorithm 2) is possible. We have

I = W>LΣW = W>M diag(σ2
η1 , . . . , σ

2
ηk

)M>W.

Therefore, the matrix N := W>M diag(ση1 , . . . , σηk) ∈ Rk×k is an orthogonal matrix.
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Lemma 4.5. We have

Ψ(ζ) = diag(µε1ζ1, . . . , µεnζn) +M diag(µη1 , . . . , µηk) diag(M>ζ)M>. (30)

Lemma 4.5 is proved in Appendix C.
Applying Lemma 4.1 again, we decompose Ψ(Wθ) into its diagonal and low-rank parts.

LΨ = M diag(µη1 , . . . , µηk) diag(M>Wθ)M>, (31)

DΨ = diag(µε1(Wθ)1, . . . , µεn(Wθ)n). (32)

Now, observe that

W>LΨW =

W>M diag(µη1 , . . . , µηk) diag(M>Wθ)M>W =

N diag(ση1 , . . . , σηk)−1 diag(µη1 , . . . , µηk) diag(M>Wθ) diag(ση1 , . . . , σηk)−1N>
(33)

Since N is an orthogonal matrix, the above is an SVD of W>LΨW , and N1, . . . , Nk are singular
vectors, where Ni denotes the i-th column of N . Note that Ni = σηiW

>Mi for i ∈ [k].
A key observation is that an SVD uniquely determines all singular vectors (up to sign) which

have distinct singular values. Following a similar approach to [4], we sample θ uniformly at random
over the sphere in Rk to ensure that all the singular values of W>LΨW are distinct. Define

D := diag(ση1 , . . . , σηk)−1 diag(µη1 , . . . , µηk) diag(M>Wθ) diag(ση1 , . . . , σηk)−1. (34)

Note that the diagonal of the matrix D is the following vector:

diag(ση1 , . . . , σηk)−1 diag(µη1 , . . . , µηk) diag(ση1 , . . . , σηk)−1M>Wθ

= diag(ση1 , . . . , σηk)−1 diag(µη1 , . . . , µηk) diag(ση1 , . . . , σηk)−2N>θ.

Since θ is sampled uniformly over the sphere, and N is a rotation matrix, the distribution of N>θ
is also uniform over the sphere. Consequently, all the singular values of W>LΨW are non-zero and
distinct. Therefore, the set Ω (in step (8) of the algorithm) is given by

Ω = {σηiW>Mi}ki=1.

The columns of matrix S, defined in step (9) of the algorithm, are then

{(W+)>ω : ω ∈ Ω} = {W (W>W )−1σηiW
>Mi}ki=1

= {W (W>W )−1W>σηiMi}ki=1 = {σηiMi}ki=1,

where the last step holds since W (W>W )−1W> is a projection and Range(W ) = Range(U) =
Range(LΣ) = Range(M). Hence, there exists permutation Π1, such that

S = M diag(ση1 , . . . , σηk)Π1 = A(I − Λ)−1 diag(ση1 , . . . , σηk)Π1.

Note that Col(S) = Col(A) and by (ii). As demonstrated in the proof of Theorem 3.1, we
can identify all the columns of A, as A satisfies the graph expansion and the parameter genericity
property. Moreover, under the assumptions of Theorem 3.2, Algorithm 1(Σ) returns all columns
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of A. Therefore, we can recover Â = AΠ2, for a permutation matrix Π2 ∈ Rk×k. Let B̂ be a left
inverse of Â. Then

C := B̂S = B̂A(I − Λ)−1 diag(ση1 , . . . , σηk)Π1 = Π−1
2 (I − Λ)−1 diag(ση1 , . . . , σηk)Π1.

Consider a topological ordering of the induced DAG on the hidden nodes. In such an ordering, for
every directed edge (j, i), we have j < i. Hence, Λ would be a lower triangular matrix in a topological
ordering. We proceed by reordering the rows and the columns of C to get a lower triangular matrix.
This may be done in many different ways but we show that all possible permutations that make C
lower triangular correspond to different topological orderings of the same DAG. Therefore, we can
choose any such permuted version of C, call it C̃. Then there exists a topological ordering with
corresponding matrix Λ, such that, (I − Λ)−1 diag(ση1 , . . . , σηk) = C̃ and thus Λ = I − diag(C̃)C̃−1.

Let R1 denote the set of rows in C with exactly one non-zero entry. In any lower triangular version
of C, the rows in R1 should appear on top. Furthermore, their non-zero entries should appear in
the first R1 columns. Note that rows in R1 correspond to hidden nodes with no parent. Obviously,
any ordering of them with labels 1, . . . , |R1| is faithful to topological orderings. Now, we can remove
these nodes from the DAG (equivalently eliminate the R1 columns and rows from C) and repeat the
same argument. Therefore, different permuted versions of C which are lower triangular correspond
to different topological orderings of the DAG. This completes the proof.
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A Proof of Remark 2.5

Let M̃ := M + Z. We first establish some definitions.

Definition A.1. We call a vector fully dense if all of its entries are non-zero.

Definition A.2. We say a matrix has the Null Space Property (NSP) if its null space does not
contain any fully dense vector.

Claim A.3. Fix any S ⊆ [k] with |S| ≥ 2, and set R := NM (S). Let C̃ be a |S| × |S| submatrix of
M̃R,S. Then Pr(C̃ has the NSP) = 1.
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Now, we are ready to prove Remark 2.5.

Proof (Remark 2.5). It follows from Claim A.3 that, with probability one, the following event holds:
for every S ⊆ [k] with |S| ≥ 2, and every |S| × |S| submatrix C̃ of M̃R,S , C̃ has the NSP. Henceforth
condition on this event.

Now fix v ∈ Rk with ‖v‖0 ≥ 2. Let S := supp(v), R := NM (S) and B := M̃R,S . Furthermore,
let u ∈ (R \ {0})|S| be the restriction of vector v to S; observe that u is fully dense. It is clear that
‖M̃v‖0 = ‖Bu‖0, so we need to show that

‖Bu‖0 > |R| − |S|. (35)

Suppose for sake of contradiction that Bu has at most |R| − |S| non-zero entries. Then there is
a subset of |S| entries on which Bu is zero. This corresponds to a |S| × |S| submatrix of B which
contains u in its null space, which means that this submatrix does not have the NSP—a contradiction.
Therefore we conclude that Bu must have more than |R| − |S| non-zero entries.

Proof (Claim A.3). Let s = |S| and let C̃ = [c̃1|c̃2| · · · |c̃s]>, where c̃>i is the i-th row of C̃. Also,
let C := [c1|c2| · · · |cs]> and W := [w1|w2| · · · |ws]> be the corresponding submatrices of M and Z,
respectively. For each i ∈ [s], denote by Ni the null space of the matrix C̃i = [c̃1|c̃2| · · · |c̃i]>. Finally
let N0 = Rs. Then, N0 ⊇ N1 ⊇ · · · ⊇ Ns. We need to show that, with probability one, Ns does not
contain any fully dense vector.

If one of Ni does not contain any full dense vector then we are done. Suppose that Ni contains
some fully dense vector v. Since C is a submatrix of MR,S , every row c>i+1 of C contains at least one
non-zero entry. Therefore

v>c̃i+1 =
∑
j∈[s]

v(j)c̃i+1(j)

=
∑

j∈[s]:ci+1(j)6=0

v(j)(ci+1(j) + wi+1(j))

where {wi+1(j) : j ∈ [s] s.t. ci+1(j) 6= 0} are independent random variables (from Z). Moreover,
they are of c̃1, . . . , c̃i and thus of v. By assumption on the distribution of the wi+1(j),

P

[
v ∈ Ni+1

∣∣∣∣c̃1, c̃2, . . . , c̃i

]
= P

[ ∑
j∈[s]:ci+1(j)6=0

v(j)(ci+1(j) + wi+1(j)) = 0

∣∣∣∣c̃1, c̃2, . . . , c̃i

]
= 0. (36)

Consequently,

P

[
dim(Ni+1) < dim(Ni)

∣∣∣∣c̃1, c̃2, . . . , c̃i

]
= 1 (37)

for all i = 0, . . . , s− 1. As a result, with probability one, dim(Ns) = 0.
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B Proof of Lemma 4.1

For each I ∈ P, let UI , VI ∈ R|I|×k be any matrices such that U>I AI and V >I B are invertible. Then
for any distinct I, J,K ∈ P,

AIB
>
I = AI(B

>
J VJ)(B>J VJ)−1(U>KAK)−1(U>KAK)B>I

= AIB
>
J VJ(U>KAKB

>
J VJ)−1U>KAKB

>
I . (38)

Notice that for any distinct I, J ∈ P, CI,J = AIB
>
J . Since AI and BJ have rank k, so does CI,J .

Let UI ∈ R|I|×k and VJ ∈ R|J |×k be respectively the matrices of left and right singular vectors of
CI,J (corresponding to non-zero singular values). Since UI and AI have the same range, it follows
that U>I AI is invertible. Similarly V >J BJ is invertible. Using identity (38), we obtain

AIB
>
I = CI,JVJ(U>KΣK,JVJ)−1U>KCK,I , (39)

for any distinct I, J,K ∈ P. Therefore D can be determined as DI,I = CI,I − AIB>I for I ∈ P and
L = AB> is subsequently determined as L = C −D.

C Proof of Lemma 4.5

Ψ(ζ) = E[xx>〈η, x〉] = E[(Mη + ε)(η>M> + ε>)〈η,Mη + ε〉]
= E[(Mηη>M> + εε> +Mηε> + εη>M>)(ε> + η>M>)ζ]

= E[εε>ε>ζ +Mηη>M>(η>M>ζ)]

= E[εε>〈ε, ζ〉] +ME[ηη>〈η,M>ζ〉]M>.

(40)

The proof is completed by showing that for any deterministic vector v ∈ Rk, and any random
vector z = (z1, . . . , zk) with zero mean uncorrelated entries, we have

E[zz>〈z, v〉] = diag(v) diag(µz1 , . . . , µzn). (41)

We compute the diagonal and off-diagonal entries separately.

E[zizi〈v, z〉] = viE[z3
i ] +

∑
k 6=i

vkσ
2
ziE[zk] = viµzi . (42)

For j 6= i

E[zizj〈v, z〉] = E[zizj
∑
k

vkzk] = viσ
2
z,iE[zj ] + vjσ

2
z,jE[zi] +

∑
k 6=i,j

vkE[zi]E[zj ]E[zk] = 0. (43)

D Proof of Remark 3.8

Write

Σ = AE[hh>]A> + E[εε>]. (44)
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By Theorem 3.1, we can identify the columns of A, i.e., we can recover Ã = AΠ1 for some
permutation matrix Π1. Also, as demonstrated in the proof of Theorem 3.1, we can decompose Σ
into its low-rank part AE[hh>]A> and diagonal part E[εε>]. Let B̃ ∈ Rk×n be a left inverse of Ã.
Then,

B̃AE[hh>]A>B̃> = Π−1
1 E[hh>]Π−>1 . (45)

Therefore, we have the second order moment of the hidden nodes (in some ordering of the nodes).
Now consider k hidden nodes corresponding to the row (and columns of ) Π−1

1 E[hh>]Π−>1 . Label
these nodes with 1, . . . , k. Using the oracle we can find a permutation π2 which puts the hidden
nodes in a topological ordering. Let Π2 be the corresponding permutation matrix to π2. Then
Σ̃ := Π2Π−1

1 E[hh>]Π−>1 Π>2 is the second order moment of the hidden nodes in some topological
ordering. By definition of a topological ordering, it is immediate to see that the coefficient matrix Λ
is lower triangular in a topological ordering of the hidden nodes. Therefore, we can write

Σ̃ = (I − Λ)−1E[ηη>](I − Λ)−>, (46)

where η is the vector formed by the noise variables ηi (in the corresponding topological ordering)
and Λ ∈ Rk×k is a lower triangular matrix with all diagonal entries equal to zero. Therefore,

Σ̃1/2 = (I − Λ)−1 diag(ση1 , . . . , σηk)Q, (47)

for some rotation Q ∈ Rk×k. Notice that L := (I − Λ)−1 diag(ση1 , . . . , σηk) is a lower triangular
matrix with diagonal entries ση1 , . . . , σηk which are all positive. Hence, using the LQ decomposition
of Σ̃1/2, we can recover L. (Recall that the LQ factorization is unique if we require that the diagonal
entries of the lower triangular part are positive).

Finally, diag(L) = diag((I − Λ)−1) diag(ση1 , . . . , σηk) = diag(ση1 , . . . , σηk). Therefore, Λ = I −
diag(L)L−1. The result follows.

E Proof of Lemma 3.11

Let A = USV > be a thin singular value decomposition of A, where U ∈ Rn×k has orthonormal
columns, S = diag(σ1(A), . . . , σk(A)), and V ∈ Rk×k is an orthogonal matrix. Fix a partition index
v ∈ [`]. Let z1, z2, . . . , zn ∈ {0, 1} be independent indicator random variables such that zi = 1 iff row
i of A is included in Av. Note that

A>vAv = A> diag(z1, z2, . . . , zn)A

=
n∑
i=1

ziA
>eie

>
i A = V S(

n∑
i=1

ziU
>eie

>
i U)SV >.

(48)

Therefore

σk(Av)
2 = λmin(A>vAv) ≥ λmin(S)2 · λmin(

n∑
i=1

ziU
>eie

>
i U) = σk(A)2 · λmin(

n∑
i=1

Xi), (49)

where Xi := ziU
>eie

>
i U ∈ Rk×k. Notice that 0 � Xi and

λmax(Xi) ≤ ‖U>ei‖22 ≤
k

n
cA. (50)
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Moreover,

n∑
i=1

EXi =
n∑
i=1

P(zi = 1)U>eie
>
i U =

1

`
U>U =

1

`
I. (51)

By Lemma E.1,

P
{
λmin(

d∑
i=1

Xi) ≤
1

4`

}
≤ k · e−(3/4)2/(2`cAk/n) ≤ δ/`, (52)

where the last inequality follows from the assumption on cA. Therefore by Eq. (49), σk(Av) ≥
σk(A)/(2

√
`), with probability at least 1− δ/`. A union bound over all v ∈ [`] completes the proof.

Lemma E.1 (Matrix Chernoff bound [50]). Consider a finite sequence {Xi} of independent and
symmetric k × k random matrices such that 0 � Xi and λmax(Xi) ≤ r almost surely. Define
µmin := λmin(

∑
i EXi). For any ε ∈ [0, 1], we have

P
{
λmin

(∑
i

Xi

)
≤ (1− ε)µmin

}
≤ k · e−ε2µmin/(2r). (53)
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