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Affine scaling interior Levenberg-Marquardt
method for KKT systems*
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Abstract We develop and analyze a new affine scaling Levenberg-Marquardt method
with nonmonotonic interior backtracking line search technique for solving Karush-Kuhn-
Tucker (KKT) system. By transforming the KKT system into an equivalent minimiza-
tion problem with nonnegativity constraints on some of the variables, we establish the
Levenberg-Marquardt equation based on this reformulation. Theoretical analysis are
given which prove that the proposed algorithm is globally convergent and has a local
superlinear convergent rate under some reasonable conditions. The results of numerical

experiments are reported to show the effectiveness of the proposed algorithm.
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0 Introduction

Let FF : R — R™ be once and h : R® — RP, ¢ : R® — R™ be twice continuously
differentiable functions. Define by

L(z,y, z)défF(x) + Vh(z)y — Ve(z)z

the Lagrangian function, then we consider the following Karush-Kuhn-Tucker (KKT) sys-

tem:
L(z,y,z) = 0,
h(z) = 0, (0.1)
c(z) >0, 2>0, 2T¢(x) = o

The main purpose of this paper is to find a KKT point w* = (z*,y*, 2*) € R*tPtm
satisfying the KKT system (0.1). Due to its close relationship with the variational inequality
problem and the nonlinear programming problems, many constructing efficient algorithms
for (0.1) have been established.

The method we will describe in this paper is similar to the idea proposed in [1], where
system (0.1) is transformed into a differentiable unconstrained minimization problem. Based
on the Fischer-Burmeister function in [2]: ¢ : R? — R defined by

W(aa b)déf \% a? + b? — (a’ + b)v
which has a very interesting property that
v(a,b)=0<a>0,b>0, ab=0.

Hence we can reformulate system (0.1) as a nonlinear system of equations ®(w) = 0, where
the nonsmooth mapping ® : R*TP+m — R*"+P+™ i5 defined by

L(z,y,z2)
o(c(z),z)

B(w)ED(2,y,2)%

and

$lc(2), 2) = (pler(@)s21), - p(em(), 2m)) T € R™.

It is easy to see that solving (0.1) is equivalent to finding a global solution of the problem

1 1
min ¥(w)E70w) e (w) = Few)[*, (0.2)
here ¥(w) denotes the natural merit function of the equation operator .
This unconstrained optimization approach has been used in [1,3-4] to develop some
Newton-type methods for the solution of (0.1). Despite their strong theoretical and nu-
merical properties, these methods may fail to find the unique solution of (0.1) arising from
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strongly monotone variational inequalities because the variable z is not forced to be non-
negative in [1, 3-4]. This, together with the fact that the variable z has to be nonnegative
at a solution of (0.1), we are naturally led to consider the following variant of the problem:

min ¥(w) s.t. z>0. (0.3)

Therefore, this paper will focus on the study of this reformulation of the KKT system (0.1).

It is well known that, it is rather difficult to solve the constrained optimization (0.3)
directly. In order to avoid handling the constraints explicitly, we can use affine scaling
strategies which contain an appropriate quadratic function and an scaling matrix to form a
quadratic model similar to Coleman and Li in [5]. And finally, we will consider to apply an
affine scaling Levenberg-Marquardt method to the quadratic model.

This paper is organized as follows. In the next section, we propose the nonmonotone
affine scaling Levenberg-Marquardt algorithm with backtracking interior point technique
for solving (0.1). In section 2, we prove the global convergence of the proposed algorithm.
In section 3, we discuss the local convergence property. Finally, the results of numerical
experiments of the proposed algorithm are reported in Section 4.

1 Algorithm

This section describes the affine scaling Levenberg-Marquardt method in association
with nonmonotonic interior backtracking technique for solving a bound-constrained mini-
mization reformulated by KKT system (0.1).

By the differentiability assumptions we made on the functions F', ¢ and h, and by the
convexity of ¢, it is obvious that the mapping ® is locally Lipschitzian and thus almost
everywhere differentiable by Rademacher’s theorem. Let us denote by Dg the set of points
w € R*"PT™M at which & is differentiable. Then, we can consider the B-subdifferential of ®
at w,

Opd(W)H |H=  lim  VIWHT}
wk 2w, wkeDyg

which is a nonempty and compact set whose convex hull
0 (w) < conv(9p®(w))

is Clarke’sl® generalized Jocobian of ® at w.
Proposition 1.1 Let w = (2,y,2) € R"*P+*™. Then, each element H € 0®(w) can
be represented as follows:

VoL(w) Ve(x) Vh(z)Daw) \
H = Ve(x)T 0 0 )
~Vh(x)" 0 Dy(w)

where D,(w) = diag(ay(w), -+, am(w)), Dp(w) = diag(by(w), -+ , by (w)) € R™*™ are diag-
onal matrices whose jth diagonal elements are given by

wlo) = @) Ay
) ,/hj(x)QJrzjz > ) ,/hj(;p)QJrz]z
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Zf (hj(ﬁl)),Zj) 7é (070)7 and by
aj(w) =& —1, bj(w) =¢ — 1 for any (&,¢;) with [|(&,¢)]] <1

if (hj(-r)7 zj) = (0,0).

Proposition 1.201 U is continuously differentiable, and V¥ = HT®(w) for every H
in 0P (w).

Since the solving (0.1) is equivalent to finding a global solution of the problem (0.3),
a classical algorithm for solving (0.1) will be based on the reformulated problem (0.3), i.e.,
®(w) =0,z > 0. As is known to all that the concept of nonsmooth Levenberg-Marquardt
method is to make Newton-like method globally convergent while maintaining its excellent
local convergence behavior. Now, we begin the description of the affine scaling interior
Levenberg-Marquardt method with its core, the underlying Newton-like iteration.

Ignoring primal and dual feasibility of the problem (0.3), the first-order necessary con-
ditions for w* to be a local minimizer are

(9*)i=0, ifielUP,
(¢*)i=0, ifieJand (wh); >0, (1.1)
(¢%); >0, ifieJand (wh); =0,
where g(w)défv\ll(w), (g*); is the ith components of g* = g(wx), Idéf{l, <o,nl, Pdéf{n +
1,--+,n+p} and Jdﬁf{n+p+1,~' ,n+p+m}.
In order to omit the constraints appeared in the problem (0.3), we introduce an affine
scaling matrix similar to the idea in [5]. The scaling matrix D), = D(w") arises naturally
from examining the first-order necessary conditions for nonlinear minimization transformed

by KKT system (0.1), where

D(w) S diag{ |7 (@)| "2, |72@)]| 2, -, [y W) 2], (1.2)

and the ith component of the vector function ~(w) is defined as follows:

i, ~det ) 1, if (¢*);=0andieTUP,
= 1.3
V) { wi, if (g*); > 0and i€ J. (13)
Definition 1.1 A point w is nondegenerate if, for each index i € J,
9i(ws) =0= (ws); >0, (1.4)

where g;(wy) is the ith component of vector g(wy). A reformulated problem (0.3) is nonde-
generate if (1.4) holds for every wy.

The Levenberg-Marquardt equation arises naturally from examining the Kuhn-Tucker
conditions for the reformulate problem (0.3), i.e.,

D(w)2g(w) = 0. (1.5)
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For each k, given a positive parameter py and an identity matrix I, we define ¢, : R*TP+m —
R by

Un(d) IR + HEDENI + )
= SIENI (D + S D N D Sd (1)
and consider the minimization problem
min 1y, (d). (1.7)

We now state an affine scaling Levenberg-Marquardt method applied to the solution of the
semismooth problem (0.1). Let d* be the solution of the subproblem (1.6). Since vy (d) is
a strict convex function, d* is the global minimum of the subproblem (1.6) which is in fact
equivalent to solving the following affine scaling Levenberg-Marquardt equation

Zhu in [7] pointed out that the relevance of the used affine scaling matrix D; ' and matrix
pxI depended on the fact that the affine scaled Levenberg-Marquardt trial step d* = Dy *d*
was angled away from the approaching bound. Consequently the bounds will not prevent a
relatively large stepsize along d* from being taken. In order to maintain the strict interior
feasibility, a step-back tracking along the solution d* of the equation (1.8) could be required
by the strict interior feasibility and nonmonotonic line research technique.

Next we describe an affine scaling Levenberg-Marquardt algorithm which combines
nonmonotonic interior backtracking technique for solving the KKT system (0.1).

Algorithm 1.1

Initialization step

Choose parameters 3 € (0,%), T€(0,1),e>00<6 <1L,u=>210<qg<1
and positive integer M as nonmonotonic parameter. Let m(0) = 0. Give a starting point
WO = (29,90, 2%) with 2% > 0, calculate HY € 9®(w°). Set k = 0, go to the main step.

Main step

1. Evaluate ), = ¥(w*) = 1]|®(w*)||? and H* € 09 (w"). Calculate Dy, g% = V¥(wF) =
(H*)"®(w*) and e = | Dy Lg* .

2. If ||Dk_19kH < &, stop with the approximate solution w*.

3. Solve the affine scaling Levenberg-Marquardt equation (1.8) and obtain a step d*. Set

d* = D;;'db.
4. Choose ay, = 1,7,72%,--- until the following inequalities hold:
U + apd®) < T(®) + apB(g*) T, (1.9)
Wk rads > 0. (1.10)

where W(w!™) = maxog i< { (W)}
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5. Set

v ) and”, if wh + apd® >0,
] Opard®, otherwise,

where 0y, € (0;,1) and ), — 1 = o(||d*||) and then set

WL = Wk 4 s*,
6. Take the nonmonotone control parameter m(k + 1) = min{m(k) + 1, M} and update
H” to obtain H**! € 9®(w**1). Then set k < k + 1 and go to step 1.

2 Global convergence

Throughout this section we assume that ® is semismooth. Given w® = (29,9, 2%) €
R™*+P+m with 20 > 0, the algorithm generates a sequence {w*}. In our analysis, we denote
the level set of ¥ by

E(wo)déf{w € R"PH™ | ¥(w) < T(w),z > 0}.
The following assumptions are commonly used in convergence analysis of most methods
for the constrained systems.
Assumption A1 Sequence {w*} generated by the algorithm is contained in a compact
set L(w") on RMTPT™,

Assumption A2 There exist some positive constants Xp, xo and xg such that

ID@)~' < xp, 12 < xo, [HI < x#, VH € 0P(w), Yw € L{W"). (2.1)

The next lemma will show that the algorithm is well-defined.
Lemma 2.1 At the kth iteration, let d* be a solution of Levenberg-Marquardt equation.
If |Dy 16| # 0, then we have

(g")Td* <o. (2.2)

= wkrapd® in a finite number

of backtracking steps in (1.9)-(1.10), i.e., a positive ay, can always be found in step 4.
Proof Suppose that (¢¥)Td* = 0. Since d* is a solution of Levenberg-Marquardt

Moreover, the proposed algorithm will produce an iterate w**

equation, we have

(gk)Tdk

(Dy 'g")"d*

—(d)T DN HMTHF DY + p I)d" (2.3)
Noting that the matrix DY (HRTHED, ! + g I is positive definite since > 0, (gF)Td* = 0
can only imply that d* = 0. Using the Levenberg-Marquardt equation again, we obtain

1D 9"l | = D (HSTH D + 1)
1D (H*) T HR D + I

) (2.4)

N
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which contradicts || Dy 'g¥|| # 0. So we have (¢*)Td* < 0, i.e., (2.2) holds.

Now let us prove the latter part of the lemma.

On the one hand, it is clear to see that, in a finite number of backtracking reductions,
ay, will satisfy

kY.
akdéfmin{l, F;C}défmin 1, max (wl‘j)l i=1,2,--- 'm
(d}):

with Tx % + 00 if Ej,?.))% <Oforallic{1,2,---,m}.
J k3

On the other hand, assume that w* satisfies that

(W +7md¥) > B('®)) + pr(g")TdF > W(WF) + B (g") T dF (2.5)
for all n > 0. Then

U(wF + 77dF) — W (wF)

n

> B(gh)td" (2.6)

follows. Hence, for n — oo, we have (1 — 38)(g*)Td* > 0, i.e., (¢g*)Td* > 0 which contradicts
(¢¥)Td* < 0. Therefore it is always possible to find a step length oy > 0 satisfying (1.9)-
(1.10).

So, we can see that the latter part of the lemma is also true. The total conclusion of
the lemma holds.

The main aim of the following two theorems is to prove global convergence results of
the proposed algorithm. The former indicates that at least one limit point of {w*} is a
stationary point. The latter extends this theorem to a stronger global convergent result.

Theorem 2.1 Let {w"} be a sequence generated by the proposed algorithm. Assume
that Assumptions A1-A2 hold and the nondegenerate condition of the reformulated problem
(0.3) holds. Then

P -1 k| _
liminf | D~ g"[| = 0.

Proof According to the acceptance rule (1.9) in step 4, we have that
T (W' By — W (W 4 apd®) > —Bag(g*)Td". (2.7)

Taking into account that m(k 4+ 1) < m(k) + 1, and ¥(w**!) < U(W'*®)), we have that
(WD) < maxoej<mp 1 {¥ (W17} = U(w!®). This means that the sequence
{U(w!™)} is nonincreasing for all k, and therefore {¥(w!(®))} is convergent.

From (2.3), we have

(gk)Tdk — —(a?k)T[Dlzl(Hk)THkDgl—‘rukﬂdk

—pui| "2

= —ul Dyt g" (14"
M —

*XﬁllelngQqIIdkllz (2.8)
D

N

N
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Combing (2.7) and (2.8), for all k > M, we obtain

V(W' R) < U (ol (R)—i—1 (g =T gl(k) 1 2.9
(w! )y oy {U(w )} + Baygy—1(g" P71 (2.9)
Bu

< max  {P(w' P} - Sa
XD

),1||D71 l(k)—1||2q||dl(k)—1||2.
0<j<m(i(k)~1)

1(k)—19
If the conclusion of the theorem is not true, there exist some € > 0 such that
ID % =6, k=1,2,---. (2.10)
As {T(w!™®)} is convergent, we obtain that from (2.9) and (2.10),
Jim ayry—1[[d' P> = 0. (2.11)
Further, following by induction way used in [8], it can be derived that
Jim oy ld*]* =0,

which implies that either

liminf ay, = 0, (2.12)
k—o0

or
lim ||d*| = 0. (2.13)
k—o0

First, let us consider the case that (2.13) holds. Since u=p|| D} 'g*|??< ,ux%zxi{qxiq,
we can obtain from the Levenberg-Marquardt equation that

(gk)Tdk — _(Dk—lgk)T[Dlzl(Hk)THka—l _|_‘uk1]71(Dk—lgk)
- 2l
S IDSNEMTHRD | A+
52
< 233z 7 0. (2.14)

XDXF + XD XH Xa
So ||d*|| # 0, which means that (2.13) is not true. So (2.12) holds.

Next, we will consider the case (2.12) holds. (2.12) means that there exists a subset

k C {k} such that
lim o =0. 2.15
k—oo,k€r k ( )
Assume that «j given in step 4 is the stepsize to the boundary to box constraints
along d*. From the definition 1.1, there must exist some 4 such that (w%); = 0 where w*
is any accumulation point of the sequence {w*} and without loss of generality, assume that
{wk}, is a subsequence convergent to w*. Recall the Levenberg-Marquardt equation, we can

rewrite it as

prd® = —D;%[g" + (H*)TH*d]. (2.16)
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Since w* is nondegenerate with v*(w%) = 0 for any i, we have that (w%); = 0 and (g%); # 0

for some i. Hence, if ay, is defined by some 7% (w?%) = 0 and (¢g*); # 0, then oy, = ‘T’(id(,f;;_?‘ for
J/
sufficiently large k. Using (2.16) again, we have
ap = ad > il (2.17)

[(g%)i + [(HF)TH*dF]| ™ [lgk + (HF)TH*d¥||o

Combing the above inequality and p = u||Dy 'g¥||?? > pue?® > 0, if oy, given in step 4 is
the stepsize to the boundary of box constraints along d*, we have that

liminf o, > lim inf A 0. (2.18)

>
k—00 k—o0 ||g§ + (IT{L];)THffdﬁ||OO

Furthermore, if (2.12) holds, the acceptance rule (1.9) means that, for large k,

823

d*) — U(WF) > Uk + 2k
.

[0
(W + - dF) — U ®)) > ﬁ{(gk)Tdk.

Noting that <& > 0, we can get from the above inequality that
U(whk + 2dk) — U (wk)
T > B(g™)Td". (2.19)

T

Taking limits to (2.19), we obtain

lim (¢¥)Td* > lim B(g*)Td*,

k—o00 k—o0
that is,
lim (1 - 8)(¢*)Td* > 0. (2.20)
k—o0

Taking into account that 1 — 8 > 0, we can obtain from (2.20) that

lim (g")Td" > 0. (2.21)

k—o0
Noting that (g*)Td* < 0, we have

lim (¢*)"d* = 0. (2.22)
k—o0
But from (2.8), we can see that (2.22) is not true.
(2.18) and (2.22) mean that (2.12) does also not hold. Hence (2.10) is not true and the
conclusion of the theorem is true.
Theorem 2.2 Let {w*} be a sequence generated by the proposed algorithm. Assume
that Assumptions A1-A2 hold and the nondegenerate condition of the reformulated problem
(0.3) holds, then

lim ||D; g% = 0.
kggoll 9 1=0
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Proof The proof is still by contradiction. Let €1 € (0,1) be given and assume that
there is a subsequence {m;} such that

| D;tg™

> 6. (2.23)

Theorem 2.1 guarantees that for any €2 € (0,e1) there is a subsequence of {m;}(without
loss of generality we assume that it is still the full sequence) and a sequence {I;} such that

1D 6" = &2, for ms <k <1 (2.24)
and
1D g | < eo. (2.25)

From the affine scaling Levenberg-Marquardt equation, we have that

(6")Td" = —(d)T D (HY)TH D! + e d)d"
< —ukHdkHz
= —p| D g P1d )P
< —pes?|db|?
pey!
< == ldk)*. (2.26)
XD

Since the matrix D;l (H’“)TH]’CD,;1 + i1 is nonsingular in the affine scaling Levenberg-
Marquardt equation, we can get that

(gk)Tdk — _(Dlzlgk:)T[Dlzl(Hk:)THlezl +/14k;I]_1D]:1,gk
D
IDiH(H*)THEDE | +
- 2 (2.27)
XbX% + BXDXT X
So, combing (2.26) and (2.27), we obtain
2q+2
[P k2
[(g")Td")? > orasrmr CAl IR
XD (XDXH + XD XH Xs')
Noting that (¢*)Td* < 0, we can get
g+1
e
(") <~ i —— (225)
xo\ XX + I
q+1
where 0% Viicy

XDV XEXG X XX
(1.9) and (2.28) mean that
\If(wl(k)) \I’(wl(l(k)_l)) +Bal(k)—l(gl(k)_l)le(k)_l

V(W' ®=D) — Boayy o |d" D 71]. (2.29)

NN
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Similar to the proof of Theorem 2.1, we have that the sequence {¥(w'®*))} is nonincreasing
for m; < k < I;, and hence {¥(w!™)} is convergent. So

li || = o.
kiflgoal(k) 1|| ||

Similar to the proof in [8] , we have that

5 W)y — 1 k
kginoo\ll(w ) kginoo\ll(w ). (2.30)
So we can also obtain
lim ag|d*|| = 0. (2.31)
k—oo

Similar to the proof of (2.18), we can obtain that there exists a subset x C {k} such
that
lim a4 0, (2.32)

kek,k—o0

where oy, is given in the step size to the boundary of box constraints along d*, that is, the
step size {ay} cannot converge to zero.
Since VU (w) is continuous, and (2.31) holds, we have that

(VO + Ebpond) — VU] < S0 - Bola], (2.33)

where o is given in (2.28). Noting that ¥ is continuously differentiable and using the mean
value theorem, we have the following result with 0 < &, <1

U(wP 4+ apbpd®) = V(W) + Bardp V(WP TdE + (1 — B)arbp, VI (W*)Td
+ak0k[V\P(wk =+ £kak0kdk) — V\I/(wk)]Tdk
< V(W) + B VI (WF) T, (2.34)

here the last second inequality is deduced since the last term in brackets in the right-hand
side of equality in (2.34) will become negative when ay0y||d*| is small enough. And hence
the corresponding ), — 1, as ||d*| — 0.

We then deduce from

U(w") = U(w" + ard®) > —Par(g")"d" > Boax|d"|

that for ¢ sufficiently large,

li—1
lo™ =Wl < D Wt = W

k=mqj
li—1 l;i—1

= D llawd"l= > axld|
k:mi k:mi
1 li—1

< 35 PBLICORR IClasd))

k=m1,

%[\Il(wmi) — W(wh)]. (2.35)
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(2.30) and (2.35) mean that for large i, we have

l;

my

lw™ — w'|| < ea.
(1.3) implies that
(Y™ = (V)] < 1™ = (w');] =0,
as 7 tends to infinity. Finally, from (2.25), (2.27) and triangle inequality, we get that from

l;

g™ —g" |l = |(H™) @™ — (H')To"|| < xmllw™ — wh|| < xme,
g1 < ||D;119mi”
< |Dytg™ = DLlg" |+ Dyt g' — D tgh | + 1Dy g
< D™ = g" [l + Dyt = Dy gl + |1 Dy g
< XDE2 T XHX®E2 t+ €2,

which contradicts e3 € (0,e7), for arbitrarily small. This implies that (2.23) is not true, and
hence the conclusion of the theorem holds.

3 Local convergence

In this section we want to show that the Algorithm is locally fast convergent. The
assumption in this section is that a KKT point w* of (0.1) is a BD-regualr solution of the
system ®(w) = 0.

Definition 3.1 The vector w* is called BD-regular for ® if all elements H € 0p®(w™*)
are nonsingular.

The next result follows from the fact that ® is a (strongly) semismooth operator under
certain smoothness assumptions for F', h and ¢ (see [9-12]).

Proposition 3.1 The following state holds:

|®(w 4+ h) — ®(w) — Hh|| = co||h||*T9 for h—0 and H € 0®(w + h). (3.1)

The following proposition refers to Robinson’s strong regularity condition. Here, we
will not restate its definition and interested reader may consult Robinson [13] and Liu [14]
for several characterizations of a strongly regular KKT point.

Proposition 3.2 A solution w* = (z*,y*,2*) € R"xRP xR™ of system (0.1) is strongly
regular if and only if all matrices in Clarke’s generalized Jacobian 0P(w*) are nonsingular.
In particular, the strong regularity of w* is sufficient for w* to be a BD-regular solution of
the system ®(w) = 0.

The next property follows from the semicontinuity of the generalized Jacobian (see
[15]) and the assumed BD-regularity. For the precise proofs, interested reader may refer to
Lemma 2.6 in [9] and Proposition 3 in [11].

Proposition 3.3 Let w* be a BD-regular solution of ®(w) = 0. Then the following
statement hold:
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1. There exist constants ¢; > 0 and §; > 0 such that the matrices H € Ip®P(w) are
nonsingular and satisfy

IH Y <a (3.2)
for all w with |w — w*|| < d;.
2. There exist constants co > 0 and 6 > 0 such that
@) = eollw — ] (3.3)
for all w with ||w — w*|| < 2.

In order to prove the local convergence theorem, we will need the following lemmas.
Lemma 3.1 Assume that w* = (z*,y*, z*) is a BD-regular solution of ®(w) = 0. Then
we have that

2] < erl|@(w")] (34)

for all w* = (2% y*, 2*) sufficiently close to w*, where ¢, is given in Proposition 3.3 and
drF = Dk_lcik and d* denotes a solution of Levenberg-Marquardt equation.

Proof Since w* is a BD-regular KKT point, the matrix H* € 9p®(w”) are uniformly
nonsigular for all w* sufficiently close to w* by Proposition 3.3, i.e., there exists a constant
c1 > 0 such that

¥ < I(E®) M IHP || < ex || HEd"]]. (3.5)

On the other hand, using Levenberg-Marquardt equation, we have

0 = (Dy'g")Td" + () [Dy (HYTH D! + el ]d®
> (gk)Tkor(dk)T(Hk)Tdek
_ (I)(wk)dek—i—HdekHZ
> [|HMM| (@) - || H ",

$0
[H"d"|| < [|@(w)]- (3.6)
Combining (3.5) with (3.6), we can easily obtain
[d*]| < er| @ (")l (3.7)

Theorem 3.1 Assume that assumptions A1-A2 hold. Let w* be any accumulation point
of the sequence {w*} generated by the proposed algorithm and w* be a BD-regular point of
®. Then w* is a BD-reqular zero solution of ® and w* — w*, the step size oy, = 1 for large
enough k.

Proof If ®(w*) = 0 for some enough k, then from ||d*|| < ¢;||®(w¥)| we have that
d* = 0 for all large enough k and the step size aj, = 1. Therefore, without loss of generality
we may assume that D; ' (H*)T®(wk) £ 0.
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From the Levenberg-Marquardt equation, we have

(gk)Tdk — _(dAk)T[Dgl(Hk)THkD;I + Mkﬂdk
< _(dk)T(Hk)THk'dk'
N
ICH*)=H?
la* |2
< - (3.8)
ci
Using the acceptance rule (1.9) and (3.8), we have
(W +opd®) < W)+ Bag(g*)Tdb
< W)~ Dol (3.9)
1
Similar to the proof of theorem in [8], since {¥(w*)} is convergent, we have
Jim ax||d||? = 0. (3.10)
Assume that there exists a subsequence x C {k} such that
lim  |d*|| > 0. (3.11)
k—o00,k€EK
Then, assumption (3.11) implies that
lim a; =0. (3.12)

k—o00,k€EK

Similar to the proof of (2.18), we have that ay # 0 if «y is given by (1.10). And at the
same time, the acceptance (1.9) means that for large enough k,

T(wk + 22 k) — W(wh) > 2L (gh)Tdr. (3.13)
T T
Since
U (wk + ald d*) — W (k) = ol (g")Tadx + 0(% ld*])
T T T

we have that

Qg Qg
(1~ )2 (") + o 4] > 0. (3.14)
Dividing (3.14) by 2%||d*|| and noting that 1 — 8 > 0, we have that from (3.8)
k\T gk k
0< tm W& Hd2” <0 (3.15)
k—ooker ||d¥|| k—soo,kEr  CF
From (3.15), we can get that
. kT gk _ : ki _
kﬁlgorf}ceﬁ(g ) d¥ =0 and kﬁl;orf}cean | =0. (3.16)
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We now prove that if (3.16) holds, then «p = 1 must satisfy the accepted condition
(1.9) in step 4.
For large enough k, we have that
U (WP + d¥) — T(Wh) — (g")Ta*
1 1
= Slle®) + HEHT +o(ld*)* = S @@h)]* = (4)"d"

= SIS + o) (317)
This gives that
W) = W)+ (65T 4 IR o)
< WD) 4 BT+ (5 - B)(g)
51657+ ()T 2] + o ?)
< W) 4 BT — (5 — Bl — SuelldI + o)
= V(') +p(g")Td" (3.18)

Therefore, the accepted condition (1.9) holds when «ay = 1.

Now, we prove that if (3.16) holds, when ay, = 1, the accepted condition (1.10) given in
step 4 also holds at the stepsize to the boundary of box constraints along d*. (3.16) means
that (d*); — 0, for all 4. Further, (d%); — 0 for all i = 1,2,--- ,m. If (g%); = 0 for any i,
assume that oy, given in step 4 is the step size to the boundary of box constraints along d*,
the nondegenerate means that (w%); > 0, then

a = min 1’max{(dk) ,2:172,---7m} = min{1, 400} = 1.
gl

If (g%); # 0 for some 4, we have that (w%); = 0. Since (H*)TH*d* converges to zero and ju, I
is a positive definite diagonal matrix in (1.8), the nondegenerate condition of reformulated
problem (0.3) at the limit point implies that (d%); gnd —(g%); have the same sign for k
sufficiently large. Hence, if ay, is defined by some ~*(w¥%) = 0 and (g%); # 0, then oy =
IV ()| /](gh)i] for k sufficiently large. Using (2.17), again, noting p > 1, we have

. Mk
ar = minql, }
{ (g5): + [(HF)T(HS)d i
Hk T Hk k
> min{l,u— kﬂ”( J) k(TJ)d]‘C]Hk }—>1 as d* — 0.
g7l + [[(H5)T (HS)d |l

Further, by the condition on the strictly feasible stepsize 0y € (6, 1], for some 0 < 6y <

1 and 0 — 1 = o(||d¥|)), kl;n;o 0 = 1, comes from klin;o di =0.

So a, = 1, i.e., s = d* and hence Wkt = W* 4 d¥.
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Similar to the proof of (2.28), we can get that

Dfl k||14+q dk

()T < — VEIIDy g™ d" ||
2q_2q_2
XD\/X%X% + IXD XH Xe'

= —o| Dy "M |db, (3.19)

Nz
2 2 2
XDV XU XD X BT

So from (3.19), we have

L (g*)Td*
0=l =

def
where o=

> lim of| Dyt g"|[" = of D", (3.20)

which implies that D 1(H*)T®(w*) = D lg* = 0. Since w* is a BD-regular point of @,
i.e.,, D, and H* nonsingular, this gives ®(w*) = 0 which means that w* is a BD-regular zero
point of ®.

Further, w* is a BD-regular zero of ®, then there exist do > 0 and ¢o > 0 such that

[@(wh)|| > callw® — w*|| for all [Jw* —w*| < &

All the above gives wk — w*.

Theorem 3.2 Suppose that w* is a BD-reqular solution of ®(w) = 0. Let {w"*} denote
any sequence that converges to w* for all k. For each w” let d* denote a solution of Levenberg-
Marquardt equation. Then

lw® + d* — w*|| = O(lw” — w*||'*9).

Proof By the BD-regularity of w* we have for w” sufficiently close to w* and H* €
Op®(w*) that

lo® +d* — w* || < I(H®)THIIH" (@ +d* = W)
< ar||[HFdY + HF (Wb — w)||
< a(|@(w®) + H ") + [[@(w*) — d(w*) — H (" — w*)])
= c1([@(w*) + H*d"|| + collw” — w*[|F9). (3.21)
Since d* is a solution of Levenberg-Marquardt equation and d¥ = Dy, (w* —w*) is feasible
for (1.7), we obtain that
1@(w*) + H " ||* = [[@(*) + H* D d*|?
1®(w*) + H* Dt d¥||? + o |42
W)+ HY D | + pel|d¥|?
w") =
w") —

NN N

") = @(w*) + H (W = w")|2 + il Dy |* |l — ">
O(w*) = Hw* — w)|* + | D[ |lw” — w2 (3.22)

For w* with w¥% > 0, there exists sufficiently small 6 € (0,2] such that the open ball
B(w*, )= w | |lw—w*| <8, ws > 0}.

[1(
[1(
1 ("
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Let {w*} be subsequence such that w* — w* and jo be the index such that for

k > kj,, the sequence {w*/} belongs to B(w*,3). Assume k; > kj,. Then |(w§’)l| > 3 for
i=1,2,---,m. Hence, || Dy,|| <n+p+ m\/% where \/% > 1. Taking into account that

pe = pll D MR < X Lok — w4,
we can obtain from (3.22) that
2 *
IB(H) + HIE < (6 + it n+ [t — o, (329
that is,

1@(w") + H"d"|| < esl|w® — w9, (3.24)

where Csdéf\/c(% +HXDXH L2 (n 4 p+ m\/%)z.

Together (3.21) with (3.24), we have that
lo* +d* — w*|| = O(|w* — w*||'*9). (3.25)

Theorem 3.2 shows that under the assumption that a KKT point w* of (0.1) is a BD-
regualr solution of the system ®(w) = 0, the proposed algorithm has locally Q-superlinear
at (14q)-order of convergence rate.

4 Numerical experiments

Numerical experiments on a new affine scaling Levenberg-Marquardt method with non-
monotonic interior backtracking line search technique given in this paper have been per-
formed on computer. The experiments are carried out on 4 test problems which are quoted
from [16]. Here, we first transform them into the Karush-Kuhn-Tucker system, and then
start searching from the initial points given by [16] to get the numerical results. The com-
putation terminates when one of the following stopping criterions is satisfied which is either
| D g"|| < 1078 or ||Wgy1 — Wyl < 1078, The selected parameter values are: & = 1075,
8 =02,pu=1¢g=05 7=05 6 =095 and M = 5. NI and NF stand for the
numbers of iterations and function evaluations of ¥ respectively. The numerical results of
our Levenberg-Marquardt algorithm and the Modified BFGS given in [16] are presented in
the following Table 4.1.

Table 4.1 Experimental results

Problem name Levenberg-Marquardt algorithm  Modified BFGS in [16]
NI/NF NI/NF
Powell’s function of four variables 24/24 45/51
Wood’s function 35/35 54/66
A quartic function 18/18 55/61

A sine-valley function 35/36 39/54
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