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Abstract

This paper will investigate the numerical accuracy and efficiency in computing the

electrostatic potential for a finite-height cylinder, used in an explicit/implicit hy-

brid solvation model for ion channel and embedded in a layered dielectric/electrolyte

medium representing a biological membrane and ionic solvents. A charge locating

inside the cylinder cavity, where ion channel proteins and ions are given explicit

atomistic representations, will be influenced by the polarization field of the sur-

rounding implicit dielectric/electrolyte medium. Two numerical techniques, a spe-

cially designed boundary integral equation method and an image charge method,

will be investigated and compared in terms of accuracy and efficiency for comput-

ing the electrostatic potential. The boundary integral equation method based on the

three-dimensional layered Green’s functions provides a highly accurate solution suit-

able for producing a benchmark reference solution, while the image charge method

is found to give reasonable accuracy and highly efficient and viable to use the fast

multipole method for interactions of a large number of charges in the atomistic

region of the hybrid solvation model.

Key words: Poisson-Boltzmann equation, layered electrolytes and dielectrics,

image charge method, ion channels, the explicit/implicit hybrid solvation model

2



1. Introduction

Ion channels play a key role in many biological processes, including cell-cell

communication, signaling, muscle contraction etc. And it is well known that

the electrostatic interaction is important in the selectivity and transport of ions

through biological ion channels. The description of the membrane/solvents

around an ion channel can be either atomistic as in an explicit model or con-

tinuum as in an implicit model. The selection of a specific model for the solvent

depends on the accuracy and efficiency desired for the overall simulation. In

order to take advantage of the accuracy of the explicit model and the efficiency

of the implicit model, the explicit/implicit hybrid solvation model has been

actively studied [1–7]. In such a model, the simulation system is partitioned

into two regions, the inner region, usually of a regular geometric shape such

as a finite cylinder in this study, containing passing ions and transmembrane

channel proteins, and the remaining outer region exterior to the cylinder. In

the former region, an atomistic description is used for the ion channel proteins

and transgressing ions, while in the latter region, the membrane and solvents

are described by dielectric constants or Debye-Hückel length parameters mod-

eling the solvents’ conductivity and concentrations. In molecular dynamics

simulations using a hybrid solvation model, only the atoms inside the ex-

plicit region are dynamically simulated while the effect of the implicit region

is included by the use of a reaction field, which results from the polarization

of the implicit solvents and membrane by charges inside the explicit region.

Therefore, for an hybrid solvation model of ion channels it is critical to have

a fast and accurate method to calculate the reaction field for a finite-height

cylinder embedded in a layered dielectric/electrolyte medium for ion channel

simulations in atomic details.

Due to the complicated and infinite inhomogeneous setting of the hybrid sol-

vation model, it is a computational challenge to find an accurate and fast
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numerical method for the reaction field of the implicit region. Traditional fi-

nite difference or finite element methods have been used to solve the Poisson

equation for the reaction field; however, issues such as artificial boundary con-

ditions for the truncated computational domain and the interface treatment for

the membrane and ion-channel walls have not been resolved completely. Pre-

vious work treating dielectric interfaces for ion-channels includes computing

the polarization surface charges using a variational formulation [21], empirical

formulas for self-energies of ions in channels [22], and an asymptotical analyt-

ical method [23,24]. A more natural and accurate candidate for handling the

infinite region and dielectric boundaries is to use a surface integral equation

method applied to the boundary of the finite-height cylinder cavity while the

interface conditions along the membrane/solvents are handled by a layered

Green’s function, which addresses the interface conditions in its definition.

Alternatively, the image charge method, as a semi-analytical approach, can

also be used to find the reaction field for regular shaped geometries including

dielectric spheres [11] and a finite-height cylinder. These two methods will be

the subjects of study in this paper.

One of the challenges for high accuracy in surface integral equation method

comes from the difficulties caused by the corner/edge singularities of the sur-

face. There have been a large number of special techniques proposed to elim-

inate the error pollution from the geometry irregularities, including graded

meshes and special charge basis [17–20]. However, simply and easily imple-

mentable methods are still in demand. This paper will adopt a different ap-

proach to circumvent this difficulty for the hybrid solvation model of ion chan-

nel by deforming the geometry of the finite-height finite cylinder to a smooth

semi-sphere top cylinder. Then, by using layered Green’s functions for the

layered media inside and outside the new extended geometry, we can remove

the singularity effect arising from the geometric edges. The resulting surface

integral equation method can be used as a universal benchmark method for
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validating other types of numerical solutions including the finite difference and

finite element methods. With the specially formed surface integral equation

method, we are also in a position to carefully study a previously proposed im-

age charge method for finding the reaction field for the finite-height cylinder

[43]. Comparison and validation of the image charge method will be conducted.

The rest of the paper is organized as follows. In Section 2, the background

material on the hybrid solvation model for ion channels is given and how the

reaction field can be used for molecular dynamics simulation of ion channels

would be discussed. Section 3 presents the concept and construction of the

layered Green’s function for the Poisson and Poisson-Boltzmann equations.

Section 4 formulates the surface integral equation method for the electrostatic

potential based on an extended geometry for the finite-height cylinder. Section

5 reviews the previous image charge method. In Section 6, numerical tests with

both the boundary integral equation method and the image charge method

are carried out and compared. Finally, a conclusion is given in Section 7.

2. A hybrid solvation model for ion channels

The hybrid solvation model for ion channels in Fig. 1 consists of a cavity of

a finite-height cylinder embedded in a layered dielectric/electrolyte medium

representing the biological membrane and ionic solvents. Inside the cylinder,

the channel proteins and transgressing ions are treated with explicit atomistic

representations while, outside the cylinder, the membrane and solvents are

treated as continuous dielectrics. Moreover, the ionic solvents above and below

the membrane are modeled by the Debye-Hückel (D-H) mean-field theory for

the mobile ion density distributions, which gives the Poisson-Boltzmann (P-B)

equation for the electrostatic potential in the electrolyte solvents [25].

As shown in Fig. 1, the dielectric constants in the interior of the cylinder, the
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Fig. 1. Schematic illustration of an ion-channel hybrid model.

membrane, and the ionic solvent are denoted by ε0, εs, and εm, respectively.

And λ1 and λ2 are the inverse Debye-Hückel lengths of the ionic solvents above

and below the membrane, respectively. Now, let us assume that point charges

qi locate at ri inside the cylinder. The potential field ϕ satisfies the following

P-B equation:

[
▽2ϕ(r)− λ2(r)ϕ(r)

]
= − 4π

ε(r)

N∑
i=1

qiδ(r− ri). (1)

Here, ε(r) and λ(r) are two piecewise constant functions defined by corre-

sponding dielectric constant and the inverse Debye-Hückel length at point

r = (x, y, z), as shown in Fig. 1. If r is inside the cylinder, we have λ(r) = 0,

Eq. (1) then reduces to a Poisson equation [32]. Moreover, as the fixed charges

qi are located inside the cylinder, Eq. (1) is a homogeneous Poisson-Boltzmann

equation outside the cylinder [42]. On the dielectric interface between different

regions in the hybrid solvation model, the potential ϕ and its normal derivative

satisfy the following continuity conditions:

[ϕ(r)] = 0, [ε(r)
∂ϕ

∂n
(r)] = 0,

where [ · ] denotes the jump across an interface.

The solution to (1) is decomposed into two parts, a direct Coulombic potential

due to the charge in a homogeneous medium of the property of the dielectric

cylindrical cavity and a second part, so-called reaction field ϕrf(r), which re-
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flects the polarization of the dielectric medium outside the cylinder. Namely,

we have the following decomposition

ϕ(r) =
1

ε0

N∑
i=1

qi
|r− ri|

+ ϕrf(r). (2)

The main issues for obtaining accurate and fast numerical solution to (1) con-

sist of treating the material inhomogeneities in the hybrid solvation model

and the singular behavior of the potential caused by the presence of the fixed

point charges qi. Two numerical methods are ideal for handling these issues,

one is the boundary integral equation using layered Green’s functions where

the boundary conditions along layer interfaces are built into the definitions

of the Green’s functions. The other is the image method where the interface

conditions on the layer and cylinder interfaces can be handled by introduc-

ing appropriate image charges. Each of these two methods will have its own

advantages in terms of accuracy and efficiency. While the former will be able

to produce highly accurate solutions once the geometric singularity from the

edges of the cylinder is taken care of, the image charge method is a semi-

analytical and efficient method and leads itself to the fast multipole method

implementation for computing the relevant electrostatic interactions of many

charges in an atomic system. The accuracy and efficiency of the two methods is

our objective in studying numerical approximations to the potential problem

(1).

For molecular dynamics simulations of ion channels, once the electrostatic po-

tential is obtained, the electrostatic force on a given charge due to all other

charges can be obtained by differentiating the potential functions. Other forces

such as the Lennard-Jones or van der Waals forces is short-ranged force and

can also be obtained by taking the derivatives of their corresponding poten-

tials. Finally, the Newton’s equation of motion is employed to evolve the loca-

tions of all charges, and statistical analysis of the trajectories of the charges

would then give the macroscopic properties and structure information of the
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ion channel system. As the electrostatic interactions are long-ranged, the calcu-

lation of the electrostatic potential is the most time consuming part in molec-

ular dynamics simulations, the efficiency and accuracy of a computational

method for the electrostatic potential would directly affect the practicality of

the simulation methods. Therefore, an efficient method to solve equation (1)

is crucial for practical simulations of ion channels in atomistic details.

3. Layered Green’s functions

In order to form a boundary integral equation for the hybrid solvation model

of ion channel, a 3-D layered Green’s function would be needed for the P-

B equation (1). Due to the symmetry of the layered media in the horizontal

directions, the 2-D Fourier transform can be used to obtain the Fourier spectral

form of the Green’s function. Moreover, the Hankel transform can be used to

reduce the 2-D Fourier spectral form to 1-D Sommerfeld-type integrals.

3.1 Fourier spectral form of the Green’s function
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Fig. 2. Schematic illustration of a three-layer structure.

For convenience, we illustrate the technique using a three-layer medium as

depicted in Fig. 2, which can be easily extended to any multi-layered medium.
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In Fig. 2, two interfaces are located at z = 0 and z = D, respectively, where

D is the thickness of the middle layer, and εi and λi are respectively the di-

electric constant and inverse Debye-Hückel lengths for area Ωi, i = 1, 2, 3. The

fundamental solution G(,′ ) we concerned satisfies the equation of following

form.

ε(r)
[
▽2G(r, r′)− λ2(r)G(r, r′)

]
= −δ(r− r′), (3)

subject to the continuity conditions across both interfaces

[G(r, r′)]z=0,D = 0,

[
ε(r)

∂G(r, r′)

∂n

]
z=0,D

= 0, (4)

where ε(r) = εi, λ(r) = λi for r ∈ Ωi, i = 1, 2, 3.

When r′ ∈ Ωj, j = 1, 2, 3, let Pj(r, r
′) satisfy the following equation for a

homogeneous space with dielectric constant εj

εj
[
▽2Pj(r, r

′)− λ2jPj(r, r
′)
]
= −δ(r− r′), (5)

whose solution is

Pj(r, r
′) =

e−λj |r−r′|

4πεj|r− r′|

=
1

2π

∫ +∞

−∞

∫ +∞

−∞
dkxdkye

ikx(x−x′)eiky(y−y′) e
−η̃j |z−z′|

4πεj η̃j
, (6)

where

η̃j =
√
k2ρ + λ2j , (7)

and kx and ky are the spectral variables for x and y, respectively, kρ =√
k2x + k2y.

If defing

Gmod,j(r, r
′) =


G(r, r′)− Pj(r, r

′), r ∈ Ωj,

G(r, r′), r ̸∈ Ωj,

(8)

then it is not difficult to see from (3)-(5) that Gmod,j satisfies

▽2Gmod,j(r, r
′)− λ2iGmod,j(r, r

′) = 0, r ∈ Ωi, i = 1, 2, 3. (9)
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Using using 2-D Fourier transform in the x and y directions gives

∂2Ĝmod,j

∂z2
(kρ, z, z

′)− η̃2i Ĝmod,j(kρ, z, z
′) = 0, (10)

whose solution is

Ĝmod,j(kρ, z, z
′) = Cofi1e

−η̃iz + Cofi2e
η̃iz.

Using corresponding inverse Fourier transform yields Gmod,j

Gmod,j(r, r
′)

=
1

2π

∫ +∞

−∞

∫ +∞

−∞
dkxdkye

ikx(x−x′)eiky(y−y′)Ĝmod,j(kρ, z, z
′)

=
1

2π

∫ +∞

−∞

∫ +∞

−∞
dkxdkye

ikx(x−x′)eiky(y−y′)
[
Cofi1e

−η̃iz + Cofi2e
η̃iz

]
, r ∈ Ωi.

(11)

Combining it with the definition of Gmod,j(r, r
′) in (8) leads to the Fourier

spectral form of the 3-D layered Green’s function G(r, r′), see (A.1)-(A.3)

in Appendix A. Moreover, the coefficients Cofi1 and Cofi2 can be found by

substituting (6), (8), and (11) into the interface conditions.

3.2 Calculation of the Fourier spectral form of layered Green’s function

This section is to discuss the calculation of the Fourier spectral form of the

layered Green’s function given in the last section through the Hankel trans-

form.

In order to simplify the 2-D integrals in the Fourier spectral form of the

Green’s function, for a 2-D radial symmetric function, we introduce the polar

coordinates in the physical space and the spectral space respectively as follows

x− x′ = ρ cosα, y − y′ = ρ sinα, (12)

and

kx = kρ cos β, ky = kρ sin β. (13)
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Then the 2-D inverse Fourier transform can be rewritten into an 1-D Som-

merfeld integral as follows

f(ρ, z, z′) = F−1
{
f̂(kρ, z, z

′)
}

=
1

2π

∫ +∞

−∞

∫ +∞

−∞
dkxdkyf̂(kρ, z, z

′)ei[kx(x−x′)+ky(y−y′)]

=
1

2π

∫ +∞

0
dkρ

∫ 2π

0
dβf̂(kρ, z, z

′)kρe
ikρρ cos(α−β)

=
∫ +∞

0
dkρf̂(kρ, z, z

′)kρJ0(kρρ), (14)

where J0(z) is the Bessel function of order 0

J0(z) =
1

2π

∫ 2π

0
eiz sin θdθ.

The Green’s function given by (A.1)-(A.3) in Appendix A can be written into

the form of (14) for corresponding specific integrand f̂ .

To compute the normal derivative of the Green’s function, ∂G
∂n

, needed in the

coming boundary integral equation, we may first calculate the derivatives ∂G
∂x
,

∂G
∂y

and ∂G
∂z

via the following procedure.

From (14), we have

∂

∂z
f(x, y, z, z′) =

∫ +∞

0
dkρ

[
∂

∂z
f̂(kρ, z, z

′) kρJ0(kρρ)

]
. (15)

Taking f̂ as Ai, Bi, Ci, Di listed Appendix A, leats to

∂
∂z
Ai(kρ, z, z

′) = −η̃1Ai(kρ, z, z
′), ∂

∂z
Bi(kρ, z, z

′) = −η̃2Bi(kρ, z, z
′),

∂
∂z
Ci(kρ, z, z

′) = η̃2Ci(kρ, z, z
′), ∂

∂z
Di(kρ, z, z

′) = η̃3Di(kρ, z, z
′), i = 1, 2, 3.

On the other hand, in order to calculate the derivatives of the Green’s function

G in the x- and y-directions, using the identities

∂

∂x
= cosα

∂

∂ρ
− sinα

ρ

∂

∂α
,

∂

∂y
= sinα

∂

∂ρ
+

cosα

ρ

∂

∂α
, (16)
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we obtain

∂

∂x
f(ρ, z, z′) =

∂

∂x
F−1

{
f̂(kρ, z, z

′)
}

=

{
cosα

∂

∂ρ
− sinα

ρ

∂

∂α

}
F−1

{
f̂(kρ, z, z

′)
}

= cosα
∫ +∞

0
dkρf̂(kρ, z, z

′)kρ
∂

∂ρ
J0(kρρ)

= − cosα
∫ +∞

0
dkρf̂(kρ, z, z

′)k2ρ J1(kρρ), (17)

and
∂

∂y
f(ρ, z, z′) = − sinα

∫ +∞

0
dkρf̂(kρ, z, z

′)k2ρ J1(kρρ), (18)

where the identity J ′
0(ρ) = −J1(ρ) has been used in the last equality, and

J1(ρ) is the Bessel function of order 1 defined by

J1(z) =
1

2π

∫ 2π

0
e−i(θ−z sin θ)dθ.

Hence, the 3-D layered Green’s function and its derivatives can be obtained

by numerical quadrature of the 1-D Sommerfeld-type integrals.

4. Boundary integral equation method for a finite-height cylinder

This section will give a specially designed boundary integral equation for the

hybrid solvation model for ion channels and aim to remove the effect of ge-

ometric singularities arising from the edges of the finite-height cylinder. The

idea is to attach respectively two “virtual” semi-spheres at the top and bottom

surfaces of the finite-height cylinder shown in Fig. 1 to form a round-top cylin-

der, see its schematic illustration in Fig. 3, and then formulate a boundary

integral equation on the surface of the resulting round-top cylinder, instead.

The round-top cylinder has layered medium both inside and outside, thus the

layered Green’s functions for the interior and exterior layered medium may

be used to derive the boundary integral equation. It should be emphasized
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Fig. 3. Schematic illustration of a round-top cylinder.

that the “virtual” semi-spherical surfaces are only used for the mathematical

formulation and do not alter the physical dielectric properties of the medium

where they are embedded into.

4.1 The boundary integral equations

Let Ω0 denote the finite-height cylinder with disk top and bottom, S+ and S−

be two semi-spheres attached to the disk top and bottom of the finite-height

cylinder, and Ω∗ = Ω0 ∪ S+ ∪ S− be the round-top cylinder. For the layered

structure as shown in Fig. 3, the sub-region Ωi is characterized by dielectric

constant εi and inverse Debye-Hückel length λi and the piecewise constant

functions ε(r) and λ(r) in (1) become

(ε(r), λ(r)) =



(ε0, λ0 = 0), r ∈ Ω0,

(εk+1, λk+1), r ∈ Ωk+1/Ω0,

(εj, λj), r ∈ Ωj, j = 1, 2, · · · , k, k + 2, k + 3, · · · , k + s+ 1.

(19)
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Before deriving our boundary integral equations (BIE), we first list some ad-

ditional notations and illustrations here for later reference:

• Γi is the interface between two adjacent layers, and the normal vector ni on

Γi is defined as the region Ωi’s outward normal vector on the boundary Γi,

i.e., ni directs into Ωi+1, i = 1, 2, · · · , k + s

• Γi will be separated into two parts: inside and outside Ω∗, denoted by Γ+
i =

Γi ∩ (Ω∗)c and Γ−
i = Γi ∩ Ω∗, respectively, where (Ω∗)c =3 /Ω∗.

• The surface of the finite-height cylinder is denoted by ∂Ω0 = ∂Ωu
0 ∪ ∂Ωs

0 ∪

∂Ωd
0, i.e. a union of corresponding top, side, and bottom surfaces, and the

normal vector on each surface is defined directing from the inside of the

cylinder to the outside.

• Define P± = ∂S± as the surface of the semi-sphere S±, and the normal

vector on P± are directing from the inside of the semi-sphere to the outside.

• Denote ϕ(r) = ϕi(r) for r ∈ Ωi, i = 0, 1, 2, · · · , k+s+1, where the potential

ϕi(r) is a smooth function defined in the subregion Ωi. Note that the jumps

[ϕ] and [ε ∂ϕ
∂n
] are equal to zero at each interface Γi and ∂Ω0.

In a layered medium depicted in Fig.4 with a piecewise layered dielectric prop-

erties, same as those outside the round-top cylinder Ω∗,

λ̄(r) = λi, ε̄(r) = εi, i = 1, 2, · · · , k + s+ 1, (20)

the fundamental solution Ḡ(r, r′) of Eq. (1) with the singularity at r′ satisfies

ε̄(r)
[
▽2Ḡ(r, r′)− λ̄2(r)Ḡ(r, r′)

]
= −δ(r− r′), (21)

and the interface conditions

[Ḡ(r, r′)] = 0,

[
ε̄(r)

∂Ḡ

∂n
(r, r′)

]
= 0, r ∈ Γi, i = 1, 2, · · · , k + s,

where

Ḡ(r, r′) = Ḡi(r, r
′), r ∈ Ωi.

14
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Fig. 4. Schematic illustration of a layered media, same as that outside the round-top

cylinder Ω∗.

Multiplying Eq.(1) by ε̄(r)Ḡ(r, r′) and Eq.(21) by ϕ(r) and then integrating

their difference on R3\(Ω∗ ∪B(r′, ρ))c yields

0 =
∫
R3\(Ω∗∪B(r′,ρ))

ε̄(r)
[
Ḡ(r, r′)▽2ϕ(r)− ϕ(r)▽2Ḡ(r, r′)

]
dr

=
∫
R3\(Ω∗∪B(r′,ρ))

ε̄(r)▽
[
Ḡ(r, r′)▽ϕ(r)− ϕ(r)▽Ḡ(r, r′)

]
dr, (22)

where B(r′, ρ) denotes the small ball centered at r′ with a radius ρ, 0 < ρ ≪

1. Using the Green’s second identity may further give the following integral

equation

ϕ(r′) =
∫
∂Ωs

0

εk+1

[
ϕk+1(r)

∂Ḡk+1

∂n
(r, r′)− Ḡk+1(r, r

′)
∂ϕk+1

∂n
(r)

]
dS(r)

+
∫
P+∪P−

ε̄(r)

[
ϕ(r)

∂Ḡ

∂n
(r, r′)− Ḡ(r, r′)

∂ϕ

∂n
(r)

]
dS(r), r′ ∈ (Ω∗)c.

(23)

We refer the readers to Appendix B for its detailed derivations. Let r′ tend to

the point p ∈ ∂Ωs
0 ∪ P+ ∪ P− from the outside of Ω∗, then Eq.(23) gives

1

2
ϕ(p) =

∫
∂Ωs

0

εk+1ϕ0(r)
∂Ḡk+1

∂n
(r,p)− ε0Ḡk+1(r,p)

∂ϕ0

∂n
(r)dS(r)

+
∫
P+∪P−

ε̄(r)

[
ϕ(r)

∂Ḡ

∂n
(r,p)− Ḡ(r,p)

∂ϕ

∂n
(r)

]
dS(r), (24)
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here we have used the interface conditions that

ϕ0(p) = ϕk+1(p), ε0
∂ϕ0

∂n
(p) = εk+1

∂ϕk+1

∂n
(p), p ∈ ∂Ωs

0.
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Fig. 5. Schematic illustration of a layered media, same as that inside the round-top

cylinder Ω∗.

Similarly, in a layered medium depicted in Fig.5 with a piecewise layered

dielectric properties, same as those inside the round-top cylinder, Ω∗

(ε̂(r), λ̂(r)) =


(εi, λi), r ∈ Ωi, i = 2, 3, · · · , k, k + 2, k + 3, · · · , k + s,

(ε0, λ0), r ∈ Ω0,

(25)

the fundamental solution of Eq. (1) with singularity at r′ satisfies

ε̂(r)
[
▽2Ĝ(r, r′)− λ̂2(r)Ĝ(r, r′)

]
= −δ(r− r′), (26)

and the interface conditions

[Ĝ(r, r′)] = 0,

[
ε̂(r)

∂Ĝ

∂n
(r, r′)

]
= 0, r ∈ Γi, i = 2, · · · , k + s− 1,

where

Ĝ(r, r′) =


Ĝ0(r, r

′), r ∈ Ω0,

Ĝi(r, r
′), r ∈ Ωi, i = 2, · · · , k, k + 2, k + 3, · · · , k + s.
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Multiplying Eq.(1) by ε̂(r)Ĝ(r, r′) and Eq.(26) by ϕ(r) and then integrating

their difference on Ω∗\B(r′, ρ) yields

−4π
N∑
i=1

qiĜ(ri, r
′) =

∫
Ω∗\B(r′,ρ)

ε̂(r)
[
Ĝ(r, r′)▽2ϕ(r)− ϕ(r)▽2Ĝ(r, r′)

]
dr

=
∫
Ω∗\B(r′,ρ)

ε̂(r)▽
[
Ĝ(r, r′)▽ϕ(r)− ϕ(r)▽Ĝ(r, r′)

]
dr. (27)

Using the Green’s second identity again, we can get

ϕ(r′) =
∫
∂Ωs

0

ε0

[
Ĝ0(r, r

′)
∂ϕ0

∂n
(r)− ϕ0(r)

∂Ĝ0

∂n
(r, r′)

]
dS(r)

+
∫
P+∪P−

ε̂(r)

[
Ĝ(r, r′)

∂ϕ

∂n
(r)− ϕ(r)

∂Ĝ

∂n
(r, r′)

]
dS(r)

+ 4π
N∑
i=1

qiĜ(ri, r
′), r′ ∈ Ω∗, (28)

whose detailed derivation has been given in Appendix B.

Let r′ approach to the point p ∈ ∂Ωs
0 ∪ P+ ∪ P− from the inside of Ω∗, then

Eq.(28) gives

1

2
ϕ(p) =

∫
∂Ωs

0

ε0

[
Ĝ0(r,p)

∂ϕ0

∂n
(r)− ϕ0(r)

∂Ĝ0

∂n
(r,p)

]
dS(r)

+
∫
P+∪P−

ε̂(r)

[
Ĝ(r,p)

∂ϕ

∂n
(r)− ϕ(r)

∂Ĝ

∂n
(r,p)

]
dS(r)

+ 4π
N∑
i=1

qiĜ(ri,p). (29)

Until now, we have finished the derivation of our boundary integral equations

(24) and (29), in which no geometric singularity is involved.

4.2 Finite element approximations for the boundary integral equations

This section is to discuss the finite element approximation of the boundary

integral equations (24) and (29). For the sake of convenience, we rewrite the

17



boundary integral equations (24) and (29) into the following forms

1

2
f(p) =

∫
∂Ωs

0

εk+1f(r)
∂Ḡk+1

∂n
(r,p)− ε0h(r)Ḡk+1(r,p)dS(r)

+
∫
P+∪P−

ε̄(r)

[
f(r)

∂Ḡ

∂n
(r,p)− h(r)Ḡ(r,p)

]
dS(r), (30)

and

1

2
f(p) =

∫
∂Ωs

0

ε0

[
h(r)Ĝ0(r,p)− f(r)

∂Ĝ0

∂n
(r,p)

]
dS(r)

+
∫
P+∪P−

ε̂(r)

[
h(r)Ĝ(r,p)− f(r)

∂Ĝ

∂n
(r,p)

]
dS(r)

+ 4π
N∑
i=1

qiĜ(ri,p), (31)

where

f(r) =


ϕ0(r), r ∈ ∂Ωs

0,

ϕ(r), r ∈ P+ ∪ P−,

h(r) =


∂ϕ0

∂n
(r), r ∈ ∂Ωs

0,

∂ϕ
∂n
(r), r ∈ P+ ∪ P−.
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Fig. 6. The planar projection of the body-fitted mesh. Left: top semi-sphere surface;

right: the side surface of the cylinder.

A body-fitted mesh is generated for the surface of the round-top cylinder,

where each element is set as a curved line triangle of which every point locates

exactly on the surface of the round-top cylinder. Fig. 6 shows the planar
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projection of such body-fitted mesh. Use rt to denote the coordinates of the

tth mesh vertex, where the index t ∈ {t1, t2, · · · , tM}, and ψt be the linear

basis function satisfying

ψti(rtj) = δij.

Then the functions f(r) and h(r) can be approximated by

f(r) ≈
∑
t

ftψt(r), h(r) ≈
∑
t

htψt(r),

where

ft = f(rt), ht = h(rt).

Based on the above body-fitted mesh and linear basis function ψt, Eqs. (30)

and (31) may be approximated as follows

1

2
f(p) =

∑
t

ft

[∫
Et∩∂Ωs

0

εk+1ψt(r)
∂Ḡk+1

∂n
(r,p)dS(r)

+
∫
Et∩(P+∪P−)

ε̄(r)ψt(r)
∂Ḡ

∂n
(r,p)dS(r)

]

−
∑
t

ht

[∫
Et∩∂Ωs

0

ε0ψt(r)Ḡk+1(r,p)dS(r)

+
∫
Et∩(P+∪P−)

ε̄(r)ψt(r)Ḡ(r,p)dS(r)

]

=
∑
t

Ap,tft −
∑
t

Bp,tht, (32)

and

1

2
f(p) =−

∑
t

ft

[∫
Et∩∂Ωs

0

ε0ψt(r)
∂Ĝ0

∂n
(r,p)dS(r)

+
∫
Et∩(P+∪P−)

ε̂(r)ψt(r)
∂Ĝ

∂n
(r,p)dS(r)

]

+
∑
t

ht

[∫
Et∩∂Ωs

0

ε0ψt(r)Ĝ0(r,p)dS(r)

+
∫
Et∩(P+∪P−)

ε̂(r)ψt(r)Ĝ(r,p)dS(r)

]

+ 4π
N∑
i=1

qiĜ(ri,p)

=
∑
t

−Ãp,tft +
∑
t

B̃p,tht + 4π
N∑
i=1

qiĜ(ri,p). (33)
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where Et is the set of all elements with the mesh vertex rt. If letting p go

through all the mesh vertexes rt, t = t1, t2, · · · , tM , then Eqs. (32)-(33) lead

to the finite element approximations of the boundary integral equations (24)

and (29) in the following matrix form


1
2
I − A B

1
2
I + Ã −B̃




f

h

 =


0

h

 , (34)

where the matrices A = [Ati,tj ], B = [Bti,tj ], Ã = [Ãti,tj ] and B̃ = [B̃ti,tj ], and

the vectors f = [ftj ],h = [htj ] and b = [4π
N∑
i=1

qiĜ(ri, rtj)],

As soon as the above linear system (34) is solved, the potential ft and its

derivative ht are obtained.

In the following, we still need to discuss the evaluation of the singular integrals

appeared in (32)-(33) or the elements of the coefficient matrix in (34). A typical

term in those singular integrals is taking the following form

I =
∫
△t

F (r, rtj)ψt(r)dS, (35)

where △t ∈ Et is a surface element with the mesh vertex rt, and F (r, rtj) is a

function with singularity at rtj , representing Ĝ(r, rtj), Ḡ(r, rtj),
∂Ĝ
∂n

(r, rtj), or

∂Ḡ
∂n

(r, rtj).

Let Γ be a conformal transformation from a standard triangular element △0

to the curved triangular element △t, that is to say, the map Γ conforms to

geometric shape of the round-top cylinder. The expression of the map Γ is

detailedly given in Appendix C. Then, the integral I in (35) can be transforms
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into an integral on the element △0 as follows

I =
∫
△t

F (r, rtj)ψt(r)dS(r)

=
∫
△0

F ((ξ, η), rtj)ψt((ξ, η))

∣∣∣∣∣
∣∣∣∣∣∂r∂ξ × ∂r

∂η

∣∣∣∣∣
∣∣∣∣∣ dξdη

=
∫
△0

F̂ (ξ, η, rtj) dξdη. (36)

If rtj is not a vertex of the element △t, then the integrand F̂ (ξ, η, rtj) has

no singularity on the element △0 so that the Gaussian quadratures for the

triangular element△0 can be employed to evaluate the integral I. For example,

I ≈ |△0|
6∑

i=1

wiF̂ (ξi, ηi, rtj), (37)

where the weights wi and nodes (ξi, ηi) are listed in the Table 1.

However, if rtj is a vertex of the element△t, then the integrand F̂ (ξ, η, rtj) will

have the singularity at the mesh vertex (0, 0), (1, 0), or (0, 1) of the element

△0. In this case, in order to evaluate the integral I, we may introduce the local

polar coordinate transformation case by case to take the singularity away.

Case 1: singularity at the mesh vertex (0, 0) of the element △0, see the left

Table 1

The weights wi and nodes (ξi, ηi) in (37).

i wi ξi ηi

1 0.22338158 0.10810301 0.44594849

2 0.22338158 0.44594849 0.10810301

3 0.22338158 0.44594849 0.44594849

4 0.10995174 0.81684757 0.09157621

5 0.10995174 0.09157621 0.81684757

6 0.10995174 0.09157621 0.09157621
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plot in Fig. 7. The polar coordinate transformation is taken as

ξ(ρ, α) = ρ cosα. η(ρ, α) = ρ sinα,

so that the integral I may be transformed into

I =
∫
△0

F̂ (ξ, η, rtj) dξdη =
∫ π

2

0
dα

∫ 1
cosα+sinα

0
dρ

[
ρF̂ (ξ(ρ, α), η(ρ, α), rtj)

]
.

(38)

Case 2: singularity at the mesh vertex (0, 1) of the element△0, see the middle

plot in Fig. 7. The polar coordinate transformation is taken as

ξ(ρ, α) = ρ cosα, η(ρ, α) = 1 + ρ sinα,

so that we have

I =
∫
△0

F̂ (ξ, η, rtj) dξdη =
∫ 7π

4

3π
2

dα
∫ 1

cos(α−3π/2)

0
dρ

[
ρF̂ (ξ(ρ, α), η(ρ, α), rtj)

]
.

(39)

Case 3: singularity at the mesh vertex (1, 0) of the element △0, see the right

plot in Fig. 7. The polar coordinate transformation is taken as

ξ(ρ, α) = 1 + ρ cosα, η(ρ, α) = ρ sinα,

so that we have

I =
∫
△0

F̂ (ξ, η, rtj) dξdη =
∫ π

3π
4

dα
∫ 1

cos(π−α)

0
dρ

[
ρF̂ (ξ(ρ, α), η(ρ, α), rtj)

]
.

(40)

After the above polar coordinate transformation, the integral I becomes reg-

ular and can be calculated by using the Gaussian quadratures. Specially, the

above three cases can be casted into the unified form and can be calculated

as follows

I =
∫ αu

αd

dα
∫ ρ̂(α)

0
dρ

[
ρF̂ (ρ, α, rtj)

]
=

I1∑
i=1

S1∑
s=1

wiρi,sF̂ (ρi,s, αi, rtj), (41)

where wi denotes the product of corresponding Gaussian quadrature weight,

and {αi, i = 1, 2, · · · , I1} are Gaussian quadrature points within the interval
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( 0, 0 ) ( 1, 0 )

ρ=1/(cosα+sinα)

α

( 0, 1 )

( 0, 0 )

α−3π/2

ρ=1/cos(α−3π/2)

( 1, 0 )

( 0, 1 )

( 0, 0 ) ( 1, 0 )

π−α

ρ=1/cos(π−α)

( 0, 1 )

Fig. 7. left: singularity at (0, 0); middle: singularity at (1, 0); right: singularity at

(0, 1).

(αd, αu), while {ρi,s, s = 1, 2, · · · , S1} are Gaussian quadrature points within

the interval (0, ρ̂(αi)),

5. Image charge method for the reaction field ϕrf(r)

The second method we are investigating for the hybrid solvation model of ion

channels (with a configuration of the finite-height cylinder) is the image charge

method, which is developed in [43] to find the reaction potential ϕrf(r) in (2).

This section will briefly summarizes the image charge method. To derive the

image charge representation of the reaction field ϕrf(r), the inhomogeneity due

to layered and infinite-height cylinder interfaces is considered separately, and

then the results for each type of the interfaces are assembled to form the image

charge method for the hybrid solvation model of ion channels.

The image charge method is based on the uniqueness theorem of the P-B equa-

tion, which allows using virtual charges to represent equivalently the reaction

field as a result of the polarization field from the dielectric medium outside the

cylinder. Mathematically, the solution of the P-B equation is approximated

by a sum of the Coulomb potentials from a group of point charges. For a

simple cavity like a sphere, such a result can be obtained analytically [8,11].
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However, for a finite cylinder, the situation is more complicated.

5.1 Image charges for a layered medium

Again, consider the three-layer structure as shown in Fig. 2. The middle mem-

brane layer with a thickness D has a low dielectric constant ε2 = εm, typically,

εm = 2. The electric potential ϕm in the membrane layer satisfies a Poisson

equation:

▽2ϕm(r, rs) = −4πqs
εm

δ(r− rs), (42)

where a source charge qs is located at rs (corresponding to Eq.(1) with N =

1) in the membrane layer and the ionic solvents in regions Ω1 and Ω3 are

characterized by dielectric permittivities ε1 and ε3 and the inverse Debye-

Hückel lengths λ1 and λ3, respectively. The potentials in these two regions are

governed by the linearized P-B equation

▽2ϕ− λ2iϕ = 0, ∈ Ωi, i = 1, 3,

As in (2), the potential ϕm inside the membrane layer can be rewritten as the

sum of a Coulombic contribution ϕcoul(r, rs) = qs/εm|r − rs| and a reaction

potential ϕrf due to the polarization of the ionic solvents by the source charge

qs. By a detailed analysis using the continuous interface condition of the po-

tential and the normal displacement at the interface, the analytical expansion

of the reaction field can be found to be [43]:

ϕrf(r, rs) =
∫ +∞

0

∫ +∞

0
dαdβ cosα(x−xs) cos β(y−ys)[A(α, β)eγz+B(α, β)e−γz],

(43)

where

A(α, β) =
2qs
εmπγ

e−γ(D−zs)(γ − τ1)(γ + τ3) + e−γ(D+zs)(γ − τ1)(γ − τ3)

(γ + τ1)(γ + τ3)eγD − (γ − τ1)(γ − τ3)e−γD
, (44)

B(α, β) =
2qs
εmπγ

eγ(D−zs)(γ + τ1)(γ − τ3) + e−γ(D−zs)(γ − τ1)(γ − τ3)

(γ + τ1)(γ + τ3)eγD − (γ − τ1)(γ − τ3)e−γD
, (45)
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and γ =
√
α2 + β2, τi = ε

√
γ2 + λ2i , i = 1, 3. Although the integrand in (43)

is damped exponential function, numerical calculation of (43) is still time

consuming. Our goal is to find some image charges such that the sum of their

electrostatic potentials gives an accurate approximation to the reaction field

as

ϕrf(r, rs) ≈ ϕirf(r, rs) =
1

εm

∑
images

qimage

|r− rimage|
. (46)

In order to reach such a goal, two strategies have been proposed [43] to find

out the locations and the magnitudes of the image charges.

Strategy 1: we fix the location of the kth pair of the image charges at x±k

due to physical symmetry,

rk = (xk, yk, zk) =
(
xs, ys, (−1)k

(
zs −

D

2

)
+

(
k +

1

2

)
D

)
, k = ±1,±2, · · · .

(47)

Then by minimizing the discrete L2 error between the image based potential

field and the exact potential, we can get the magnitudes of the image charges

q±k.

Strategy 2: we construct the image charges using Prony approximation,

where a sum of exponentials is used to approximate the Fourier transform

of the exact reaction field potential (43). After applying the inverse Fourier

transform to the sum of exponentials, both locations and magnitudes of the

images can be obtained.

5.2 Image charges for an infinite-height cylinder

For an infinite-height cylinder of radius a, consider a point charge qs located

at position rs inside the cylinder. The cylinder partitions the whole space into

two regions, characterized by dielectric constants ε0 and εm, respectively.

According to [15] , the reaction potential of the point charge qs at rs =
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Fig. 8. Schematic illustration of an infinite-height cylinder.

(ρs, φs, zs) under the cylindrical coordinate system can be approximated as

ϕcylinder
rf (r, rs) ≈ ϕcylinder

irf (r, rs) =
1

ε0

C∑
c=1

fc
| r− rc|

. (48)

Here rc = (ρc, φs + φc, zs), fc, ρc and φc can be generated by a function de-

pending on ε0 and εm [43].

5.3 Image charge method for ion channel hybrid model

Now we can combine the results of the layered medium and the infinite cylinder

to handle the inhomogeneity of the ion-channel model. Assuming that the

source charge qs is at rs = (ρs, φs, zs) inside an infinite cylinder with a radius

of the ion channel size a. The dielectric constant inside the cylinder is that

of the cavity (close to 1-2) and the dielectric constant outside the cylinder

is taken as that of the membrane. The cylindrical interface will require the

following image charges fcqs, c = 1, ..., C, for the approximation of the reaction

field potential as in (48). Now, we introduce the planar membrane/solvent

interfaces at z = 0, D, which will generate 2K image charges qsqk and fcqsqk,

k = ±1, ..,±K, for the approximation of the reaction field as in Strategies 1 or

2 for each of the charges qs and fcqs. Altogether, the reaction field for the ion

channel model can now be approximated by the potential of (2K+1)(C+1)−1
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image charges as

ϕrf(r, rs) ≈ ϕirf(r, rs) =
qs
ε0

C∑
c=0

K∑
k=−K

(1− δc0δk0)fcqk
| r− rc,k|

, (49)

where rc,k is the image charge point given in Strategies 1 or 2 [43] indexed by

k in the three layered medium for the source charge located at rc.

6. Numerical results

This section is to investigate the numerical accuracy and efficiency in com-

puting the layered Green’s functions and the electrostatic potential for an

explicit/implicit hybrid solvation model for ion channel (in the configuration

of a finite-height cylinder).

6.1 Numerical computations of layered Green’s functions

In practical calculations, we will need to truncate the one-dimensional integral

in (14) to some finite length, which is taken to be L = 80 in our tests, and then

subdivide the interval [0, L] into 10 subintervals; on each subinterval 30 Gauss

quadrature points will be used for numerical integrations. We will consider

the three-layer medium in Fig. 2 with D = 3.

Example 1 As in Fig. 2 but with ε1 = 1, ε2 = ε3 = 3, λ1 = λ2 = λ3 = 0.

Take the singular source point at r′ = (x′, y′, z′) = (0, 0, 3.5) and the field point

at r = (0.001, 0.001, z). The exact Green’s function is also known analytically

as:

Gexact(r, r
′) =


1

4πε1|r−r′| +
ε1−ε2
ε1+ε2

1
4πε1|r−r′′| , r ∈ Ω1,

2
ε1+ε2

1
4π|r−r′| , r ∈ Ω2 ∪ Ω3.

(50)
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Here r′′ = (x′, y′, 2D − z′), D is the thickness of middle layer. Comparison

between the numerical and exact Green’s functions and their derivatives are

given in Fig. 9 with good accuracy.
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Fig. 9. Comparison of the numerical and exact Green’s function, n = (1, 1, 1).

6.2 Numerical tests on the BIE method (34)
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Fig. 10. Illustration of a cylinder embedded in a three-layer structure.

Several numerical examples are presented here to validate the BIE method

(34), including both homogeneous and inhomogeneous cases. As shown in

Fig. 10, we consider a cylinder embedded in a three-layer structure, so the
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Green’s function obtained in Section 3 can be used. Here a N1 × N2 × N3

round-top cylinder surface mesh implies that the nodes divide the radius (of

z-direction) of the half sphere into N1 equal parts, the azimuth angle into N2

equal parts, and the height of cylinder into N3 equal parts, respectively. For

all cases, the linear system arising from the discretization of the BIE is solved

by the bi-conjugate gradient method with an iteration tolerance error 10−10.

Example 2 Let ε1 = 1, ε0 = ε2 = ε3 = 5, λ0 = λ1 = λ2 = λ3 = 0, and the

source point locates at rs. The exact electrostatic potential is known as

ϕ(r) =


2

ε1+ε2

qs
|r−rs| , r ∈ Ω1,

qs
ε2|r−rs| +

ε2−ε1
ε2+ε1

qs
ε2|r−r′s|

, r ∈ Ω0 ∪ Ω2 ∪ Ω3,

(51)

where r′s = (xs, ys, 2D − zs). With qs = 1, the errors of the numerical results

on the potential and its derivative on the cylinder surface are calculated with

a 15× 15× 15 surface mesh are shown in Fig.11.

Fig. 12 shows the error of the reaction field potential in (51) in region Ω0

for three meshes 10 × 10 × 10, 20 × 20 × 20, and 40 × 40 × 40, which gives a

convergence rate of about 1.9.

Example 3 In this case, we will consider a more realistic case for the hybrid

model for an ion channel where ε0 = 1, ε2 = 2, ε1 = ε3 = 80, λ1 = 2.5, λ3 =

0.5, λ0 = λ2 = 0 and the radius and the height of the cylinder are 4Å and 12Å,

respectively. As an exact solution of the electrostatic potential is unavailable,

we will compare with a 3D finite difference method [40] for the P-B equation

with a uniform grid with a spacing h = 0.5Å. The computational domain of

the finite difference is taken to be [−21Å, 21Å] × [−21Å, 21Å] × [−21Å, 21Å]

and the boundary condition is taken approximately as given by the Coulombic

potential, i.e.,ϕi,j,k = qs/ϵ0|ri,j,k − rs|, where rs is the location of the source

charge.
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Fig. 11. Potential and its normal derivative on the boundary of a cylinder with

a height of 3 and a radius of the bottom semi-sphere 1, and the source point

rs = (0, 0, 0.5).

The self energy V (rs) = qsϕrf(rs)/2 of a unit point charge qs = 1 is calculated

for both the boundary integral method and the finite difference method where

the BIE method is implemented with a 15× 15× 15 surface mesh; comparison

of the results of both methods is given in Fig.13.

In example 2, the absolute error of the potential reaches the machine error,

i.e., 10−11, and the error of the normal derivative of the potential is shown to
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Fig. 13. The self energies and its relative errors between the boundary integral

equation and the finite difference method, where the source point is rs = (0, 0, z).

be around 10−3. In example 3, the BIE method gives the self energy with less

than 1% relative error within that of the finite difference method. However, due

to the approximation to the unknown boundary data on the computational

domain and the degeneracy of accuracy near the dielectric interfaces, there

is uncertainty in the accuracy of the finite difference solutions. In the next
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subsection, numerical convergence of the BIE method will be conducted.

6.3 Comparison of BIE and image charge method for potentials in an ion

channel hybrid model

Numerical results of both the BIE and image charge methods will be given

and compared in this section. First, a numerical convergence study of the BIE

method will be given to validate the accuracy of the BIE method. Then, a

comparison between the BIE and image charge methods will be done. We will

consider the potential produced by a group of 19 source charges at rs along a

vertical line segment (3, 0, zs), 1 ≤ zs ≤ 11 inside the cylinder in Fig.1 with a

radius of 4Å and a height of 12Å and ε0 = 1, εm = 2, εs = 80, λ1 = 2.5 and

λ2 = 0.5.
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Fig. 14. Numerical convergence of potential energy from the BIE. (Left) Potential

energy, (Right) error of potential energy

To study the numerical convergence rate of the BIE, we use three meshes

10 × 10 × 10, 20 × 20 × 20, and 40 × 40 × 40 for the round-top cylinder

surface, where the results obtained on the finest mesh 40× 40× 40 is used as
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the reference solution to compute the numerical convergence rate of the BIE

method. In the BIE method, after the potential and its normal derivatives

on the round-top cylinder surface are obtained, the potential of any point

inside the cylinder can be computed through (28). Thus, we can compute

the potential energy of a unit charge at rs = (0, 0, zs) defined by V (rs) =

qsϕrf(rs)/2 where ϕrf(r) is the reaction field produced by all 19 source charges.

Fig. 14 contains the computed self-energy (left) and illustrates its convergence

at a rate of 2.34 (right) as expected for a linear approximation for the BIE

method.

With the convergence of the BIE method established, the result of the BIE

method will be taken as the reference solution for the image charge method

(49). The self energy V (rs) = qsϕrf(rs)/2 of a unit point charge located within

the finite cylinder will be calculated with the image charge method with four

images to treat the planar interface inhomogeneity and three images are used

for the cylinder interface inhomogeneity, resulting in a 19 images for the image

approximation to the reaction field (49).

We probe the accuracy of the self-energy by the two image charge methods

along three different lines inside the ion-channel. Fig. 15 and Fig. 16 show the

self-energy and its error relative to the 40 × 40 × 40 mesh BIE result along

the lines defined by (0, 0, z) and (2, 0, z), respectively while Fig. 17 shows the

results along the line defined by (x, 0, 2).

It can be seen that under 19 image charges, both image charge methods give

reasonable accuracy for the reaction field in the ion channel model while the

image method given by Strategy 1 has a better numerical performance than

the image method given by Strategy 2, and in particular, the relative error of

the former stays below 4%.

Finally, we exam the accuracy of the image charge method in terms of the

number of images used, here 2K is the number of images used in (46) for the
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Fig. 15. The self energies and its relative errors of a unit charge located at (0, 0, z)

within the ion channel.
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Fig. 16. The self energies and its relative errors of a unit charge located at (2, 0, z)

within the ion channel.

horizontal interfaces and C the number of images used in (48) for the cylin-

drical interface. Fig. 18 shows the decay of the error in self energy along the

line (2, 0, z), again measured against the results obtained by the BIE method

with a 40× 40× 40 mesh, for (2K,C) = (4, 3), (4, 4), and (6, 4), respectively.

It can be seen that the error decreases with increasing number of images for

the finite-height cylinder used for the hybrid ion channel model, however, at

a larger computational cost.
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Fig. 17. The self energies and its relative errors of a unit charge located at (x, 0, 2)

within the ion channel.

2 4 6 8 10
0.01

0.02

0.03

0.04

0.05

0.06

0.07

z−axis of the ion position

R
e
la

tiv
e
 e

rr
o
r

Image (stragegy 1)

Image (stragegy 2)

10 2 4 6 8 10
0

0.005

0.01

0.015

0.02

0.025

z−axis of the ion position

R
e
la

tiv
e
 e

rr
o
r

Image (stragegy 1)

Image (stragegy 2)

10 2 4 6 8 10
0

0.005

0.01

0.015

z−axis of the ion position

R
el

at
iv

e 
er

ro
r

Image (stragegy 1)

Image (stragegy 2)

Fig. 18. Relative errors of the self energy of a unit charge located at (2, 0, z) within

the ion channel. left: K = 2, C = 3 (19 image charges), middle: K = 2, C = 4 (24

image charges), right: K = 3, C = 4 (34 image charges).

7. Conclusion

Two methods of calculating electrostatic potential in an ion channel hybrid sol-

vation model are studied. The new boundary integral equation method avoids

the edge singularity by introducing an artificial semi-sphere geometry, thus

allowing a high-accuracy numerical solution serving as a benchmark reference

method. The image charge method, with adjustable number of images, are
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much less time consuming due to its inherent simplicity, have been validated

by the BIE method to produce sufficient accuracy for the electrostatic poten-

tial for the hybrid model. It should be noted that as the matrix from the BIE

in (34) is independent of the location of the charges inside the cylinder cavity

of the hybrid model, the cost of a direct solver of the matrix equation could

become less of a concern when it is pre-factorized and re-used for dynamic

simulations by molecular dynamics simulations. In practical simulations, one

can select either the BIE or image charge method depending on the desired

accuracy and efficiency and the type of simulations.

Appendix

A Analytical form for Green’s function in a three layer medium

The Fourier spectral form of the layered Green’s function G(r, r′) are given as

follows.

For r′ ∈ Ω1, we have

G(r, r′) =



P1(r, r
′) + 1

2π

∫+∞
−∞

∫+∞
−∞ dkxdkye

ikx(x−x′)eiky(y−y′)A1(kρ, z, z
′), ∈ Ω1,

1
2π

∫+∞
−∞

∫+∞
−∞ dkxdkye

ikx(x−x′)eiky(y−y′) [B1(kρ, z, z
′) + C1(kρ, z, z

′)] , r ∈ Ω2,

1
2π

∫+∞
−∞

∫+∞
−∞ dkxdkye

ikx(x−x′)eiky(y−y′)D1(kρ, z, z
′), r ∈ Ω3,

(A.1)
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where

A1(kρ, z, z
′) =e−η̃1z

eη̃1(2D−z′)

4ε1η̃1πg

[
(ϵ1η̃1 + ϵ2η̃2)(ϵ2η̃2 − ϵ3η̃3)e

−2η̃2D

+(ϵ1η̃1 − ϵ2η̃2)(ϵ2η̃2 + ϵ3η̃3)] ,

B1(kρ, z, z
′) =e−η̃2z

eη̃1(D−z′)−η̃2D

2πg
(ϵ2η̃2 − ϵ3η̃3),

C1(kρ, z, z
′) =eη̃2z

eη̃1(D−z′)−η̃2D

2πg
(ϵ2η̃2 + ϵ3η̃3),

D1(kρ, z, z
′) =eη̃3z

eη̃1(D−z′)−η̃2D

πg
ϵ2η̃2.

For r′ ∈ Ω2, we have

G(r, r′) =



1
2π

∫+∞
−∞

∫+∞
−∞ dkxdkye

ikx(x−x′)eiky(y−y′)A2(kρ, z, z
′), r ∈ Ω1,

P2(r, r
′) + 1

2π

∫+∞
−∞

∫+∞
−∞ dkxdkye

ikx(x−x′)eiky(y−y′)

· [B2(kρ, z, z
′) + C2(kρ, z, z

′)] ,

r ∈ Ω2,

1
2π

∫+∞
−∞

∫+∞
−∞ dkxdkye

ikx(x−x′)eiky(y−y′)D2(kρ, z, z
′), r ∈ Ω3,

(A.2)

where

A2(kρ, z, z
′) = e−η̃1z e(η̃1−η̃2)D

2πg

[
(ϵ2η̃2 − ϵ3η̃3)e

−η̃2z′ + (ϵ2η̃2 + ϵ3η̃3)e
η̃2z′

]
,

B2(kρ, z, z
′) = e−η̃2z e−η̃2z

′

4ε2η̃2πg
(ϵ2η̃2 − ϵ3η̃3)[(ϵ1η̃1 + ϵ2η̃2)− (ϵ1η̃1 − ϵ2η̃2)e

2η̃2(z′−D)],

C2(kρ, z, z
′) = eη̃2z e−2η̃2D

4ε2η̃2πg
(ϵ1η̃1 − ϵ2η̃2)[(ϵ2η̃2 − ϵ3η̃3)e

−η̃2z′ + (ϵ2η̃2 + ϵ3η̃3)e
η̃2z′ ],

D2(kρ, z, z
′) = eη̃3z e

−η̃2z
′

2πg
[(ϵ1η̃1 + ϵ2η̃2)− (ϵ1η̃1 − ϵ2η̃2)e

2η̃2(z′−D)].
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For r′ ∈ Ω3, we have

G(r, r′) =



1
2π

∫+∞
−∞

∫+∞
−∞ dkxdkye

ikx(x−x′)eiky(y−y′)A3(kρ, z, z
′), r ∈ Ω1,

1
2π

∫+∞
−∞

∫+∞
−∞ dkxdkye

ikx(x−x′)eiky(y−y′) [B3(kρ, z, z
′) + C3(kρ, z, z

′)] , r ∈ Ω2,

P3(r, r
′) + 1

2π

∫+∞
−∞

∫+∞
−∞ dkxdkye

ikx(x−x′)eiky(y−y′)D3(kρ, z, z
′), r ∈ Ω3,

(A.3)

where

A3(kρ, z, z
′) =e−η̃1z

eη̃1D−η̃2D+η̃3z′

πg
ϵ2η̃2,

B3(kρ, z, z
′) =e−η̃2z

eη̃3z
′

2πg
(ϵ1η̃1 + ϵ2η̃2),

C3(kρ, z, z
′) =− eη̃2z

eη̃3z
′−2η̃2D

2πg
(ϵ1η̃1 − ϵ2η̃2),

D3(kρ, z, z
′) =eη̃3z

−eη̃3z′

4ε3η̃3πg

[
(ϵ1η̃1 + ϵ2η̃2)(ϵ2η̃2 − ϵ3η̃3)

+ (ϵ1η̃1 − ϵ2η̃2)(ϵ2η̃2 + ϵ3η̃3)e
−2η̃2D

]
.

In the above, the g is defined by

g = (ϵ1η̃1 − ϵ2η̃2)(ϵ2η̃2 − ϵ3η̃3)e
−2η̃2D + (ϵ1η̃1 + ϵ2η̃2)(ϵ2η̃2 + ϵ3η̃3).

B Derivation of integral equations (23) and (28)

Here we derive Eqs. (23) and (28). With the Green’s second identity, the

integrals on the right hand side of (22) on the boundary of R3\(Ω∗∪B(r′, ρ))c

can be split into five parts, denoted by I, II, III, IV and V respectively, i.e.

0 = I + II + III + IV + V,

Each of them will be considered separately below.

Part I: the integral on the infinite interface.
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As both Ḡ(r, r′) and ϕ(r) vanish at infinity, I = 0.

Part II: the integral on the interface of the layered structure

II =
k+s∑
i=1

∫
Γ+
i

{
εi

[
Ḡi(r, r

′)
∂ϕi

∂ni

(r)− ϕi(r)
∂Ḡi

∂ni

(r, r′)

]

−εi+1

[
Ḡi+1(r, r

′)
∂ϕi+1

∂ni

(r)− ϕi+1(r)
∂Ḡi+1

∂ni

(r, r′)

]}
dS(r)

= 0. (B.1)

Part III: the integral on the side surface of the cylinder

III = −
∫
∂Ωs

0

εk+1

[
Ḡk+1(r, r

′)
∂ϕk+1

∂n
(r)− ϕk+1(r)

∂Ḡk+1

∂n
(r, r′)

]
dS(r).

Part IV: the integral on the part of surface of the half sphere

IV = −
∫
P+∪P−

ε̄(r)

[
Ḡ(r, r′)

∂ϕ

∂n
(r)− ϕ(r)

∂Ḡ

∂n
(r, r′)

]
dS(r).

Part V: the integral on ∂B(r′, ρ)

V =
∫
∂B(r′,ρ)

ε̄(r)

[
Ḡ(r, r′)

∂ϕ

∂n
(r)− ϕ(r)

∂Ḡ

∂n
(r, r′)

]
dS(r)

= −ϕ(r′). ρ→ 0. (B.2)

Combining I − V yields (23).

Similarly, applying the Green’s second identity on (27), the integral on the

boundary of Ω∗\B(r′, ρ) can be partitioned into four parts:

−4π
N∑
i=1

qiĜ(ri, r
′) = I + II + III + IV.
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Part I: the integral on the interface of the layered structure

I =
k+s−1∑

i=2,i̸=k,k+1

∫
Γ−
i

{
εi

[
Ĝi(r, r

′)
∂ϕi

∂ni

(r)− ϕi(r)
∂Ĝi

∂ni

(r, r′)

]

−εi+1

[
Ĝi+1(r, r

′)
∂ϕi+1

∂ni

(r)− ϕi+1(r)
∂Ĝi+1

∂ni

(r, r′)

]}
dS(r)

+
∫
Γ−
k

{
εk

[
Ĝk(r, r

′)
∂ϕk

∂nk

(r)− ϕk(r)
∂Ĝk

∂nk

(r, r′)

]

−ε0
[
Ĝ0(r, r

′)
∂ϕ0

∂nk

(r)− ϕ0(r)
∂Ĝ0

∂nk

(r, r′)

]}
dS(r)

+
∫
Γ−
k+1

{
ε0

[
Ĝ0(r, r

′)
∂ϕ0

∂nk+1

(r)− ϕ0(r)
∂Ĝ0

∂nk+1

(r, r′)

]

−εk+2

[
Ĝk+2(r, r

′)
∂ϕk+2

∂nk+1

(r)− ϕk+2(r)
∂Ĝk+2

∂nk+1

(r, r′)

]}
dS(r)

= 0. (B.3)

Part II: the integral on the side surface of the cylinder

II =
∫
∂Ωs

0

ε0

[
Ĝ0(r, r

′)
∂ϕ0

∂n
(r)− ϕ0(r)

∂Ĝ0

∂n
(r, r′)

]
dS(r).

Part III: the integral on the part of surface of the half sphere

III =
∫
P+∪P−

ε̂(r)

[
Ĝ(r, r′)

∂ϕ

∂n
(r)− ϕ(r)

∂Ĝ

∂n
(r, r′)

]
dS(r).

Part IV: the integral on ∂B(r′, ρ)

IV =
∫
∂B(r′,ρ)

ε̂(r)

[
Ĝ(r, r′)

∂ϕ

∂n
(r)− ϕ(r)

∂Ĝ

∂n
(r, r′)

]
dS(r)

= −ϕ(r′). ρ→ 0. (B.4)

Combining I-IV yields (28).
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C The expression of mapping Γ

Here we list the specific expressions of various mappings Γ used in Eq.(36).

Case 1: The curved triangle △t locates at the innermost layer of the semi-

sphere surface. Denote the spherical coordinates by (ř, θ̌, ϕ̌). The mapping

Γ is defined as

( 0,1 )

( 1, 0 )

v
1

v
2

Γ

( 0, 0 )

( ξ, η )

v
3

Γ : r(ξ, η) = ((R sin θ̌ cos ϕ̌+Xcenter, R sin θ̌ sin ϕ̌+Ycenter, R cos θ̌+Zcenter),

(C.1)

where

θ̌ = (1− ξ − η)θ̌v1 + (ξ + η)θ̌v2 , ψ̌ =


0, ξ = η = 0,

ηϕ̌v2+ξϕ̌v3

ξ+η
, otherwise,

(C.2)

and the Jacobian of the mapping is

∣∣∣∣∣
∣∣∣∣∣ ∂∂ξ × ∂

∂η

∣∣∣∣∣
∣∣∣∣∣ =

∣∣∣∣∣R2 sin(θ̌)
(ϕ̌v2 − ϕ̌v3)(θ̌v2 − θ̌v1)

ξ + η

∣∣∣∣∣ , (C.3)

where R is the radius of the semi-sphere, and Xcenter, Ycenter and Zcenter are

the coordinates of the center of the sphere.

Case 2: the curved triangle △t locates on the semi-sphere surface except the

innermost layer. The mapping Γ is defined as
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( 0,1 )

( 1, 0 )

Γ

( 0, 0 )

( ξ, η )

v
1

v
3

v
2

Γ : r(ξ, η) = (R sin θ̌ cos ϕ̌+Xcenter, R sin θ̌ sin ϕ̌+Ycenter, R cos θ̌+Zcenter),

(C.4)

where

θ̌ = (1− ξ)θ̌v2 + ξθ̌v3 , ϕ̌ = (1− ξ − η)ϕ̌v1 + (ξ + η)ϕ̌v3 , (C.5)

and the Jacobian of the mapping is∣∣∣∣∣
∣∣∣∣∣ ∂∂ξ × ∂

∂η

∣∣∣∣∣
∣∣∣∣∣ = ∣∣∣R2 sin(θ̌) (ϕ̌v1 − ϕ̌v3)(θ̌v3 − θ̌v2)

∣∣∣ , (C.6)

where again R is the radius of the semi-sphere, andXcenter, Ycenter and Zcenter

are the coordinates of the center of the sphere.

Case 3: The curved triangle △t locates on the side surface of the cylinder.

Denote the cylindrical coordinate by (ρ̃, θ̃, z̃). The mapping Γ is defined as

( 0,1 )

( 1, 0 )

Γ

( 0, 0 )

( ξ, η )

v
1

v
3

v
2

Γ : r(ξ, η) = (R cos(θ̃), R sin(θ̃), z̃), (C.7)

where

θ̃ = (1− ξ − η)θ̃v1 + (ξ + η)θ̃v2 , z̃ = (1− ξ)z̃v1 + ξz̃v3 , (C.8)
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and the Jacobian of the mapping is∣∣∣∣∣
∣∣∣∣∣ ∂∂ξ × ∂

∂η

∣∣∣∣∣
∣∣∣∣∣ = ∣∣∣R (z̃v3 − z̃v1)(θ̃v2 − θ̃v1)

∣∣∣ . (C.9)
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