Mathematics > Optimization and Control

Algorithmic and Complexity Results for Cutting Planes Derived from Maximal Lattice-Free Convex Sets

Amitabh Basu, Robert Hildebrand, Matthias Köppe
(Submitted on 25 Jul 2011)
We study a mixed integer linear program with m integer variables and k nonnegative continuous variables in the form of the relaxation of the corner polyhedron that was introduced by Andersen, Louveaux, Weismantel and Wolsey [Inequalities from two rows of a simplex tableau, Proc. IPCO 2007, LNCS, vol. 4513, Springer, pp. 1--15]. We describe the facets of this mixed integer linear program via the extreme points of a well-defined polyhedron. We then utilize this description to give polynomial time algorithms to derive valid inequalities with optimal I $_$p norm for arbitrary, but fixed m. For the case of $m=2$, we give a refinement and a new proof of a characterization of the facets by Cornuejols and Margot [On the facets of mixed integer programs with two integer variables and two constraints, Math. Programming 120 (2009), 429--456]. The key point of our approach is that the conditions are much more explicit and can be tested in a more direct manner, removing the need for a reduction algorithm. These results allow us to show that the relaxed corner polyhedron has only polynomially many facets.

Comments: 35 pages, 15 figures
Subjects: Optimization and Control (math.OC); Discrete Mathematics (cs.DM)
MSC classes: 90C11
Cite as: arXiv:1107.5068 [math.OC]
(or arXiv:1107.5068v1 [math.OC] for this version)

Download:

- PDF
- Other formats

Current browse context: math.OC
< prev | next >
new | recent | 1107
Change to browse by: cs
cs.DM math

References \& Citations

- NASA ADS

Bookmark(what is this?)

Submission history

From: Matthias Köppe [view email]
[v1] Mon, 25 Jul 2011 20:27:48 GMT (113kb,D)
Which authors of this paper are endorsers?

