

Cornell University Library

arXiv.org > math > arXiv:1107.1403

Mathematics > Combinatorics

A catalogue of small regular matroids and their Tutte polynomials

Harald Fripertinger, Marcel Wild

(Submitted on 7 Jul 2011)

A catalogue of all non-isomorphic simple connected regular matroids \${\cal M} \$ of cardinality \$n \leq 15\$ is provided on the net. These matroids are given as binary matrix matroids and are sieved from the large pool of all nonisomorphic binary matrix matroids of cardinality \$\leq 15\$. For each \${\cal M}\$ its Tutte polynomial is determined by an algorithm based on internal and external base activity.

Comments: Eight pages, one figure on page 6 Subjects: **Combinatorics (math.CO)** Cite as: arXiv:1107.1403 [math.CO] (or arXiv:1107.1403v1 [math.CO] for this version)

Submission history

From: Marcel Wild [view email] [v1] Thu, 7 Jul 2011 14:29:37 GMT (14kb)

Which authors of this paper are endorsers?

Link back to: arXiv, form interface, contact.

Search or Article-id	(<u>Help</u> <u>Advanced search</u>)
	All papers 🚽 Go!
S{\cal M} given - ∖cal M}\$ nd	Download: • PDF • PostScript • Other formats
	Current browse context: math.CO < prev next > new recent 1107 Change to browse by: math
	References & Citations NASA ADS
	Bookmark(what is this?) III ↔ X № Ⅰ III III ■ III ↔ ↔