Mathematics > Combinatorics

About maximal number of edges in hypergraph-clique with chromatic number 3

Danila D. Cherkashin

(Submitted on 10 Jul 2011)
Let \$ H = (V,E) \$ be a hypergraph. By the chromatic number of a hypergraph $\$ \mathrm{H}=(\mathrm{V}, \mathrm{E})$ \$ we mean the minimum number $\$ 1 \mathrm{chi}(\mathrm{H}) \$$ of colors needed to paint all the vertices in \$ V \$ so that any edge \$ e lin E \$ contains at least two vertices of some different colors. Finally, a hypergraph is said to form a clique, if its edges are pairwise intersecting.
In 1973 Erd\H\{o\}s and Lov\'asz noticed that if an \$n\$-uniform hypergraph \$ H $=(\mathrm{V}, \mathrm{E})$ \$ forms a clique, then $\$ \backslash \mathrm{chi}(\mathrm{H})$ lin $\backslash\{2,3\}\}$. They untoduced following quantity. $\$ \$ \mathrm{M}(\mathrm{n})=\backslash \max \backslash\{|E|:$ lexists $\{\backslash r m$ an\} $\mathrm{n}-\{\backslash r m$ uniform\} $\{\backslash r m$ clique\} $\mathrm{H}=$ $(\mathrm{V}, \mathrm{E})\{\backslash \mathrm{rm}$ with $\backslash \mathrm{chi}(\mathrm{H})=3 \backslash\}$. $\$ \$$ Obviously such definition has no sense in the case of $\$ \operatorname{lchi}(\mathrm{H})=2 \$$.
Theorem 1 (P. Erdos, L. Lovasz\} The inequalities hold $\$ \$ n!(e-1)$ Ve $M(n)$ le n^{\wedge} n. \$\$
Almost nothing better has been done during the last 35 years.
At the same time, another quantity $\$ \mathrm{r}(\mathrm{n}) \$$ was introduced by Lovasz $\mathrm{r}(\mathrm{n})=$ \max
{|E|: ~ \exists \{\rm an\} ~ n-\{\rm uniform\} ~ \{\rm clique\} ~ H = (V,E) ~ \{ } \backslash rm s.t. \} $\sim \tan (\mathrm{H})=\mathrm{n} \backslash\}, \$ \$$ where $\$ \tan (\mathrm{H}) \$$ is the $\{$ lit covering number\} of $\$ \mathrm{H} \$$,
 lemptyset \backslash. $\$$ \$ Clearly, for any \$n\$-uniform clique \$ H \$, we have \$ \tau(H) \le $\mathrm{n} \$$, and if $\$ \operatorname{lchi}(\mathrm{H})=3$, then $\$ \operatorname{ltau}(\mathrm{H})=\mathrm{n} \$$. Thus, $\$ \mathrm{M}(\mathrm{n}) \backslash \mathrm{le} \mathrm{r}(\mathrm{n})$ \$. Lovl'asz noticed that for $\$ \mathrm{r}(\mathrm{n}) \$$ the same estimates as in Theorem 1 apply and conjectured that the lower estimate is best possible. In 1996 P. Frankl, K. Ota, and N . Tokushige disproved this conjecture and showed that $\$ \mathrm{r}(\mathrm{n})$ lge (lfrac $\{n\}\{2\})^{\wedge}\{n-1\} \$$.
We discovered a new upper bound for the $r(n)$ (so for $M(n)$ too). Theorem 2. $\$ \$ \mathrm{M}(\mathrm{n})$ \eq $\mathrm{r}(\mathrm{n})$ Ve $\mathrm{c} \mathrm{n}^{\wedge}\{n-1 / 2\} \backslash \mathrm{ln} \mathrm{n}$. $\$ \$$, where c is a constant.

Comments: There is 5 pages. This work was presented at the conference "Infinite and finite sets" on june 13-17,2011 in Budapest
Subjects: Combinatorics (math.CO)
Cite as: arXiv:1107.1869 [math.CO] (or arXiv:1107.1869v1 [math.CO] for this version)

Download:

- PDF
- PostScript
- Other formats

Current browse context: math.CO
< prev | next > new | recent | 1107

Change to browse by: math

References \& Citations

- NASA ADS

Bookmark(what is this?)


```
|ms
```

```
|ms
```

[v1] Sun, 10 Jul 2011 16:24:17 GMT (5kb)

Which authors of this paper are endorsers?

Link back to: arXiv, form interface, contact.

