Cornell University

Mathematics > Combinatorics

Edge-Removal and Non-Crossing Perfect Matchings

Aviv Sheyn And Ran J. Tessler

(Submitted on 12 Jul 2011)

We study the following problem - How many arbitrary edges can be removed from a complete geometric graph with $2 n$ vertices such that the resulting graph always contains a perfect noncrossing matching? We first address the case where the boundary of the convex hull of the original graph contains at most $\$ n+1 \$$ points. In this case we show that n edges can be removed, one more than the general case. In the second part we establish a lower bound for the case where the $\$ 2 n \$$ points are randomly chosen. We prove that with probability which tends to 1 , one can remove any $\$ n$ $+\backslash T h e t a(n / l o g(n)) \$$ edges but the residual graph will still contain a non-crossing perfect matching. We also discuss the upper bound for the number of arbitrary edges one must remove in order to eliminate all the non-crossing perfect matchings.

Download:

- PDF
- Other formats

Current browse cont math.CO
< prev | next >
new | recent | 1107
Change to browse b math
math.PR
References \& Citatic

- NASA ADS

Bookmark(what is this?)


```
WisE
```

Subjects: Combinatorics (math.CO); Probability (math.PR)
Cite as: arXiv:1107.2314 [math.CO]
(or arXiv:1107.2314v1 [math.CO] for this version)

Submission history

From: Ran J Tessler [view email]
[v1] Tue, 12 Jul 2011 14:57:30 GMT (45kb,D)
Which authors of this paper are endorsers?

Link back to: arXiv, form interface, contact.

