Mathematics > Combinatorics

On Zudilin's q-question about Schmidt's problem

Victor J. W. Guo, Jiang Zeng

(Submitted on 1 Apr 2012 (v1), last revised 8 Apr 2012 (this version, v2))
For any integer \$rlgeqslant 2\$, using the \$q\$-Pfaff-Saalsch\"utz identity, we prove that there exists a (unique) sequence of Laurent polynomials $\$ \backslash\left\{\mathrm{~b}^{\wedge}\{(\mathrm{r})\}\right.$ $\left._k(q) \backslash\right\}\{k=0\}^{\wedge}$ infty $\$$ in $\$ q \$$ with nonnegative integral coefficients such that \sum_\{k=0\}^n $q^{\wedge}\{-r n k\}\{n \backslash b r a c k ~ k\}^{\wedge} r\{n+k \mid b r a c k ~ k\}^{\wedge} r=\backslash s u m _\{k=0\}^{\wedge} n q^{\wedge}\{-n k\}$ \{n\brack $k\}\{n+k \mid b r a c k ~ k\} b^{\wedge}\{(r)\} _k(q)$, where $\$\{n \backslash b r a c k ~ k\} \$$ denotes the $\$ q \$-$ binomial coefficient. This gives a new solution to Zudilin's question about finding a \$q\$-analogue of Schmidt's problem.

Comments: 5 pages, two open problems are added
Subjects: Combinatorics (math.CO)
MSC classes: 05A10, 05A30, 11B65
Cite as: arXiv:1204.0187v2 [math.CO]

Submission history

From: Victor J. W. Guo [view email]
[v1] Sun, 1 Apr 2012 10:02:17 GMT (5kb)
[v2] Sun, 8 Apr 2012 11:28:25 GMT (5kb)
Which authors of this paper are endorsers?

Download:

- PDF
- PostScript
- Other formats

Current browse context:
math.CO
< prev | next >
new | recent | 1204
Change to browse by: math

References \& Citations

- NASA ADS

Bookmark(what is this?)

Fisse

Link back to: arXiv, form interface, contact.

