Cornell University

## Mathematics > Combinatorics

## Pretty good state transfer on double stars

Xiaoxia Fan, Chris Godsil<br>(Submitted on 1 Jun 2012 (v1), last revised 31 Aug 2012 (this version, v3))

Let $A$ be the adjacency matrix of a graph $\$ X \$$ and suppose $U(t)=\exp (i t A)$. We view $A$ as acting on $\$ \backslash c x^{\wedge}\{\mathrm{V}(\mathrm{X})\}$ \$ and take the standard basis of this space to be the vectors \$e_u\$ for \$u\$ in $\$ \mathrm{~V}(\mathrm{X}) \$$. Physicists say that we have perfect state transfer from vertex $\$ u \$$ to $\$ v \$$ at time $\$$ tau $\$$ if there is a scalar \$lgamma\$ such that $\$ \mathrm{U}($ (ltau)e_u = \gamma e_v\$. (Since $\$ \mathrm{U}(\mathrm{t}) \$$ is unitary, \$\norm\gamma=1 $\$$.) For example, if $\$ \times \$$ is the $\$ d \$$-cube and $\$ u \$$ and $\$ v \$$ are at distance $\$ d \$$ then we have perfect state transfer from $\$ u \$$ to $\$ v \$$ at time $\$ 1 p i / 2 \$$. Despite the existence of this nice family, it has become clear that perfect state transfer is rare. Hence we consider a relaxation: we say that we have pretty good state transfer from $\$ u \$$ to $\$ v \$$ if there is a complex number $\$ \backslash g a m m a \$$ and, for each positive real \$lepsilon\$ there is a time \$t\$ such that \$norm\{U(t)e_u - \gamma e_v\} < lepsilon\$. Again we necessarily have $\$ \mid$ |gamma|=1\$.
Godsil, Kirkland, Severini and Smith showed that we have have pretty good state transfer between the end vertices of the path $\$ P \_n \$$ if and only $\$ n+1 \$$ is a power of two, a prime, or twice a prime. (There is perfect state transfer between the end vertices only for \$P_2\$ and \$P_3\$.) It is something of a surprise that the occurrence of pretty good state transfer is characterized by a number-theoretic condition. In this paper we study double-star graphs, which are trees with two vertices of degree $\$ \mathrm{k}+1$ \$ and all other vertices with degree one. We prove that there is never perfect state transfer between the two vertices of degree $\$ \mathrm{k}+1 \$$, and that there is pretty good state transfer between them if and only if $\$ 4 \mathrm{k}+1 \$$ is a perfect square.

Comments: 15 pages, 2 EPS figures
Subjects: Combinatorics (math.CO); Quantum Physics (quant-ph)
Cite as: arXiv:1206.0082 [math.CO] (or arXiv:1206.0082v3 [math.CO] for this version)

## Submission history

From: Xiaoxia Fan [view email]
[v1] Fri, 1 Jun 2012 05:11:29 GMT (39kb)
[v2] Wed, 29 Aug 2012 04:30:34 GMT (40kb)
[v3] Fri, 31 Aug 2012 06:29:25 GMT (40kb)
Which authors of this paper are endorsers?

## Download:

- PDF
- PostScript
- Other formats

```
Current browse cont math.CO
< prev | next >
new | recent | 1206
```

Change to browse b math quant-ph

References \& Citatic

- NASA ADS

Bookmark(what is this?)

Link back to: arXiv, form interface, contact.

