arXiv.org > math > arXiv:1206.0082

Search or Article-id

(Help | Advan

All papers

Mathematics > Combinatorics

Pretty good state transfer on double stars

Xiaoxia Fan. Chris Godsil

(Submitted on 1 Jun 2012 (v1), last revised 31 Aug 2012 (this version, v3))

Let A be the adjacency matrix of a graph \$X\$ and suppose U(t)=exp(itA). We view A as acting on $\cx^{V(X)}$ and take the standard basis of this space to be the vectors e_u for u in V(X). Physicists say that we have perfect state transfer from vertex \$u\$ to \$v\$ at time \$\tau\$ if there is a scalar \$\gamma\$ such that \$U(\tau)e_u = \gamma e_v\$. (Since \$U(t)\$ is unitary, \$\norm\gamma=1 \$.) For example, if \$X\$ is the \$d\$-cube and \$u\$ and \$v\$ are at distance \$d\$ then we have perfect state transfer from \$u\$ to \$v\$ at time \$\pi/2\$. Despite the existence of this nice family, it has become clear that perfect state transfer is rare. Hence we consider a relaxation: we say that we have pretty good state transfer from \$u\$ to \$v\$ if there is a complex number \$\gamma\$ and, for each positive real \$\epsilon\$ there is a time \$t\$ such that \$\norm{U(t)e_u - \gamma e_v} < \epsilon\$. Again we necessarily have \$|\gamma|=1\$.

Godsil, Kirkland, Severini and Smith showed that we have pretty good state transfer between the end vertices of the path \$P_n\$ if and only \$n+1\$ is a power of two, a prime, or twice a prime. (There is perfect state transfer between the end vertices only for \$P_2\$ and \$P_3\$.) It is something of a surprise that the occurrence of pretty good state transfer is characterized by a number-theoretic condition. In this paper we study double-star graphs, which are trees with two vertices of degree \$k+1 \$ and all other vertices with degree one. We prove that there is never perfect state transfer between the two vertices of degree \$k+1\$, and that there is pretty good state transfer between them if and only if \$4k+1\$ is a perfect square.

Comments: 15 pages, 2 EPS figures

Combinatorics (math.CO); Quantum Physics (quant-ph) Subjects:

Cite as: arXiv:1206.0082 [math.CO]

(or arXiv:1206.0082v3 [math.CO] for this version)

Submission history

From: Xiaoxia Fan [view email]

[v1] Fri, 1 Jun 2012 05:11:29 GMT (39kb) [v2] Wed, 29 Aug 2012 04:30:34 GMT (40kb) [v3] Fri, 31 Aug 2012 06:29:25 GMT (40kb)

Which authors of this paper are endorsers?

Link back to: arXiv, form interface, contact.

Download:

- PDF
- PostScript
- Other formats

Current browse cont math.CO

< prev | next > new | recent | 1206

Change to browse b

math quant-ph

References & Citation

NASA ADS

Bookmark(what is this?)

