Mathematics > Combinatorics

Constructing graphs with no immersion of large complete graphs

Karen L. Collins, Megan E. Heenehan

(Submitted on 7 Jun 2012)
In 1989, Lescure and Meyniel proved, for \$d=5, 6\$, that every \$d\$-chromatic graph contains an immersion of \$K_d\$, and in 2003 Abu-Khzam and Langston conjectured that this holds for all \$d\$. In 2010, DeVos, Kawarabayashi, Mohar, and Okamura proved this conjecture for $\$ \mathrm{~d}=7 \$$. In each proof, the $\$ d \$$-chromatic assumption was not fully utilized, as the proofs only use the fact that a \$d\$-critical graph has minimum degree at least \$d-1 \$. DeVos, Dvolv\{r\}'ak, Fox, McDonald, Mohar, and Scheide show the stronger conjecture that a graph with minimum degree $\$ \mathrm{~d}-1 \$$ has an immersion of $\$ \mathrm{~K} _\mathrm{d} \$$ fails for $\$ \mathrm{~d}=10 \$$ and $\$ \mathrm{~d} \mid \mathrm{geq} 12 \$$ with a finite number of examples for each value of $\$ \mathrm{~d} \$$, and small chromatic number relative to $\$ \mathrm{~d} \$$, but it is shown that a minimum degree of $\$ 200 \mathrm{~d} \$$ does guarantee an immersion of \$K_d\$.
In this paper we show that the stronger conjecture is false for $\$ \mathrm{~d}=8,9,11 \$$ and give infinite families of examples with minimum degree $\$ \mathrm{~d}-1 \$$ and chromatic number $\$ \mathrm{~d}-3 \$$ or $\$ \mathrm{~d}-2 \$$ that do not contain an immersion of $\$ \mathrm{~K} _\mathrm{d} \$$. Our examples can be up to $\$(\mathrm{~d}-2) \$$-edge-connected. We show, using Haj'os' Construction, that there is an infinite class of non-\$(d-1)\$-colorable graphs that contain an immersion of $\$ K _d \$$. We conclude with some open questions, and the conjecture that a graph $\$ \mathrm{G} \$$ with minimum degree $\$ \mathrm{~d}-1 \$$ and more than $\$ \mid$ frac $\{|\mathrm{V}(\mathrm{G})|\}\{1+\mathrm{m}(\mathrm{d}+1)\} \$$ vertices of degree at least $\$ \mathrm{md} \$$ has an immersion of $\$ \mathrm{~K} _\mathrm{d} \$$.

Subjects: Combinatorics (math.CO)
MSC classes: 05c15
Cite as: arXiv:1206.1545 [math.CO]
(or arXiv:1206.1545v1 [math.CO] for this version)

Download:

- PDF
- PostScript
- Other formats

```
Current browse context:
math.CO
< prev | next >
new | recent | }120
```

Change to browse by: math

References \& Citations

- NASA ADS

Bookmark(what is this?)

Submission history

From: Megan Heenehan [view email]
[v1] Thu, 7 Jun 2012 16:29:21 GMT (35kb)

