Original Articles

Spatial Nonparametric Regression Estimation: Nonisotropic Case

Zu Di LU(1), Xing CHEN(2)

(1)Institute of Systems Science, Academy of Mathematics and Systems Sciences, Chinese Academy of Sciences;(2)Department of Statistics, Yunnan University

收稿日期 修回日期 网络版发布日期 接受日期

摘要 Data collected on the surface of the earth often has spatial interaction. In this paper, a non-isotropic mixing spatial data process is introduced, and under such a spatial structure a nonparametric kernel method is suggested to estimate a spatial conditional regression. Under mild regularities, sufficient conditions are derived to ensure the weak consistency as well as the convergence rates for the kernel estimator. Of interest are the following: (1) All the conditions imposed on the mixing coefficient and the bandwidth are simple; (2) Differently from the time series setting, the bandwidth is found to be dependent on the dimension of the site in space as well; (3) For weak consistency, the mixing coefficient is allowed to be unsummable and the tendency of sample size to infinity may be in different manners along different direction in space; (4) However, to have an optimal convergence rate, faster decreasing rates of mixing coefficient and the tendency of sample size to infinity along each direction are required.

关键词 <u>bandwidth</u> <u>kernel estimator</u> <u>mixing</u> <u>non-isotropic</u> 分类号

Spatial Nonparametric Regression Estimation: Non-isotropic Case

Zu Di LU(1), Xing CHEN(2)

(1)Institute of Systems Science, Academy of Mathematics and Systems Sciences, Chinese Academy of Sciences;(2)Department of Statistics, Yunnan University

Abstract Data collected on the surface of the earth often has spatial interaction. In this paper, a non-isotropic mixing spatial data process is introduced, and under such a spatial structure a nonparametric kernel method is suggested to estimate a spatial conditional regression. Under mild regularities, sufficient conditions are derived to ensure the weak consistency as well as the convergence rates for the kernel estimator. Of interest are the following: (1) All the conditions imposed on the mixing coefficient and the bandwidth are simple; (2) Differently from the time series setting, the bandwidth is found to be dependent on the dimension of the site in space as well; (3) For weak consistency, the mixing coefficient is allowed to be unsummable and the tendency of sample size to infinity may be in different manners along different direction in space; (4) However, to have an optimal convergence rate, faster decreasing rates of mixing coefficient and the tendency of sample size to infinity along each direction are required.

Key words <u>bandwidth</u> kernel estimator <u>mixing</u> <u>non-isotropic</u>

DOI:

	扩展功能
	本文信息
	Supporting info
	▶ <u>PDF</u> (0KB)
	▶ [HTML全文](0KB)
f	▶ <u>参考文献</u>
	服务与反馈
	▶ <u>把本文推荐给朋友</u>
ial	▶ <u>加入我的书架</u>
	▶ <u>加入引用管理器</u>
	▶ <u>复制索引</u>
	▶ <u>Email Alert</u>
	▶ <u>文章反馈</u>
)	▶ <u>浏览反馈信息</u>
e	相关信息
	▶ <u>本刊中 包含 "bandwidth"的</u> 相关文章
	▶本文作者相关文章
	• Zu Di LU
	• Xing CHEN