Original Articles

Delete-group Jackknife Estimate in Partially Linear Regression Models with Heteroscedasticity

Jin Hong YOU(1), Ge Mai CHEN(2)

(1)Department of Biostatistics, University of North Carolina, Chapel Hill, NC;(2)Department of Mathematics & Statistics, University of Calgary, Calgary, Alberta

收稿日期 修回日期 网络版发布日期 接受日期

摘要 Consider a partially linear regression model with an unknown vector parameter β, an unknown function g(·), and unknown heteroscedastic error variances. Chen, You~([23]) proposed a semiparametric generalized least squares estimator (SGLSE) forβ, which takes the heteroscedasticity into account to increase efficiency. For inference based on this SGLSE, it is necessary to construct a consistent estimator for its asymptotic covariance matrix. However, when there exists withingroup correlation, the traditional delta method and the delete-1 jackknife estimation fail to offer such a consistent estimator. In this paper, by deleting grouped partial residuals a delete-group jackknife method is examined. It is shown that the delete-group jackknife method indeed can provide a consistent estimator for the asymptotic covariance matrix in the presence of within-group correlations. This result is an extension of that in [21].

关键词 <u>partially linear regression model</u> <u>asymptotic variance</u> 分类号

扩展功能

本文信息

- ► Supporting info
- **▶ PDF**(0KB)
- ▶[HTML全文](0KB)
- ▶参考文献

服务与反馈

- ▶把本文推荐给朋友
- ▶加入我的书架
- ▶加入引用管理器
- ▶复制索引
- ▶ Email Alert
- ▶ 文章反馈
- ▶ 浏览反馈信息

相关信息

▶ <u>本刊中 包含 "partially linear</u> regression model"的 相关文章

▶本文作者相关文章

- Jin Hong YOU
- · Ge Mai CHEN

Delete-group Jackknife Estimate in Partially Linear Regression Models with Heteroscedasticity

Jin Hong YOU(1), Ge Mai CHEN(2)

(1)Department of Biostatistics, University of North Carolina, Chapel Hill, NC;(2)Department of Mathematics & Statistics, University of Calgary, Calgary, Alberta

Abstract Consider a partially linear regression model with an unknown vector parameter β , an unknown function $g(\cdot)$, and unknown heteroscedastic error variances. Chen, You~([23]) proposed a semiparametric generalized least squares estimator (SGLSE) for β , which takes the heteroscedasticity into account to increase efficiency. For inference based on this SGLSE, it is necessary to construct a consistent estimator for its asymptotic covariance matrix. However, when there exists withingroup correlation, the traditional delta method and the delete-1 jackknife estimation fail to offer such a consistent estimator. In this paper, by deleting grouped partial residuals a delete-group jackknife method is examined. It is shown that the delete-group jackknife method indeed can provide a consistent estimator for the asymptotic covariance matrix in the presence of within-group correlations. This result is an extension of that in [21].

Key words partially linear regression model asymptotic variance

DOI: