Original Articles

Ruin Probabilities under a Markovian Risk Model

Han Xing WANG(1), Da Fan FANG(2), Mao Ning TANG(3)

(1)Department of Mathematics and Information Science, Changsha University;(2)(3)Department of Mathematics, Shanghai University

收稿日期 修回日期 网络版发布日期 接受日期

摘要 In this paper, a Markovian risk model is developed, in which the occurrence of the claims is described by a point process $\{N(t)\}_{(t\geq 0)}$ with N(t) being the number of jumps of a Markov chain during the interval [0, t]. For the model, the explicit form of the ruin probability $\Psi(0)$ and the bound for the convergence rate of the ruin probability $\Psi(u)$ are given by using the generalized renewal technique developed in this paper. Finally, we prove that the ruin probability $\Psi(u)$ is a linear combination of some negative exponential functions in a special case when the claims are exponentially distributed and the Markov chain has an intensity matrix $(q_{(ij)})_{(i,j)\in E}$ such that $q_m = q_m(m1)$ and $q_{(ij)} = q_{(i(i+1))}$, $1 \le i \le m-1$.

关键词 <u>risk processes</u> <u>ruin probabilities</u> <u>markov chains</u> 分类号

Ruin Probabilities under a Markovian Risk Model

Han Xing WANG(1),Da Fan FANG(2), Mao Ning TANG(3)

(1)Department of Mathematics and Information Science, Changsha University;(2)(3)Department of Mathematics, Shanghai University

Abstract In this paper, a Markovian risk model is developed, in which the occurrence of the claims is described by a point process $\{N(t)\}_{(t\geq 0)}$ with N(t) being the number of jumps of a Markov chain during the interval [0,t]. For the model, the explicit form of the ruin probability $\Psi(0)$ and the bound for the convergence rate of the ruin probability $\Psi(u)$ are given by using the generalized renewal technique developed in this paper. Finally, we prove that the ruin probability $\Psi(u)$ is a linear combination of some negative exponential functions in a special case when the claims are exponentially distributed and the Markov chain has an intensity matrix $(q_{(ij)})_{(i,j)} \in E$ such that $q_m = q_m(1)$ and $q_i = q_{(i(i+1))}$, $1 \le i \le m-1$.

Key words <u>risk processes</u> <u>ruin probabilities</u> <u>markov chains</u>

DOI:

扩展功能

本文信息

- ▶ Supporting info
- ▶ <u>PDF</u>(0KB)
- ▶[HTML全文](0KB)
- ▶参考文献

服务与反馈

- ▶把本文推荐给朋友
- ▶加入我的书架
- ▶加入引用管理器
- ▶复制索引
- ▶ Email Alert
- ▶文章反馈
- ▶浏览反馈信息

相关信息

▶ <u>本刊中</u> 包含 "risk processes"的 相关文章

▶本文作者相关文章

- · Han Xing WANG
- Da Fan FANG
- Mao Ning TANG

通讯作者 Han Xing WANG whx@citiz.net