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1 Introduction

When sufficient energy is steadily supplied to a fluid, the ensuing dynamical
behavior involves many spatial and temporal scales and energy is dissipated
efficiently. For instance when sufficiently strong heat is supplied against the
pull of gravity to a fluid, the heat flux due to fluid flow convection exceeds the
heat flux due to molecular diffusion. The average of heat flux is quantified
in the Nusselt number N. Numerous experiments and numerical simulations
([1]) under a variety of conditions report power-law behavior

N ~ R?

where the Rayleigh number R is proportional to the amount of heat supplied
externally. The exponent ¢ is very robust and most experiments give ¢ = %,
while some situations produce ¢ = % for large R.

Mathematically, the description is based on the three dimensional Boussi-
nesq equations for Rayleigh-Bénard convection ([2]), a system of equations
coupling the three dimensional Navier-Stokes equations to a heat advection-

diffusion equation. The only known rigorous upper bound for N ([3]) at large
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R is of the order R%; the bound is valid for all weak solutions (the global
existence of smooth solutions is not known). This bound is not only a math-
ematical uper bound: there are physical reasons why ¢ = % might be the
true asymptotic value at exceedingly high R (in conditions perhaps difficult
to achieve in the laboratory; nevertheless, a few recent experimental results
hint also at ¢ = 3).

Although one can describe conditions that imply N ~ R? with ¢ = % and
even ¢ = 2 for a range of R in the full Boussinesq system ([4]), there is yet no
rigorous derivation of the exponent 2/7 as the unconditional limit for large
R in a different non-trivial model of convection. The scaling exponents have
been discussed by several authors using physical reasoning and dimensional
analysis ([5]) and in particular the exponent 2/7 has been derived in several
physical fashions involving somewhat different predictions.

Variational methods for bounding bulk dissipation in turbulence are a
classical subject. Ideas of Malkus from the fifties were followed by Howard’s
flux maximization results [6] and subsequently were developed by Busse [7]
and many others. This classical approach starts from the Reynolds equations
and assumes certain statistical symmetries.

In recent years another general variational method has been developed
and applied to estimate bulk dissipation quantities in systems in which en-
ergy is supplied by boundary conditions ([8] - [15]). A connection between
the classical method of Howard and Busse and a version of the background
field method has been established in ([16]). The method starts by translat-
ing the equation in function space by a background - a time independent
function that obeys the driving boundary conditions. A quadratic form is
associated naturally to each background, and the method consists in select-
ing those backgrounds for which this quadratic form is positive semi-definite
and then minimizing a certain integral of the background. The set of selected
backgrounds is convex. The method has certain advantages over the clas-
sical approach — in particular, there is no need for statistical assumptions.
The method is flexible enough to accommodate more partial differential in-
formation. The partial differential equation confers special properties to the
functions that represent long-lived solutions. These functions belong to a
large but finite dimensional set, the attractor associated to the PDE at the
given values of the parameters. If one can find certain quantitative features of
functions belonging to this attractor one can incorporate them in a judicious



variational problem. This is how a rigorous upper bound of the form

Wi

N <1+ C,R5(1 +log, (R))

for arbitrary R was derived recently [17] for the three dimensional equa-
tions for Rayleigh-Bénard convection obtained in the limit of infinite Prandtl
number. The Prandtl number is the ratio of the fluid’s viscosity to the
fluid’s heat conduction coefficient. These equations are an example of ac-
tive scalars ([18]); they are easier to analyze and simulate numerically than
the full Boussinesq system. In the infinite Prandtl number example one can
obtain more information about the long time behavior of solutions than in
the finite Prandtl number equations. The additional information concerns
higher derivatives. In order to exploit this additional information and deduce
a better upper bound one needs to modify substantially the background field
method: the quadratic form is no longer required to be semidefinite. Instead,
the additional information coming from the evolution equation is incorpo-
rated in the constraints of a mini-max procedure.

There are several other examples of active scalars for which one can ob-
tain interesting rigorous bounds for the bulk dissipation. For instance, recent
results ([19]) on convection in a porous layer employ an improvement of the
background field method (][20]) and agree remarkably well with the experi-
mental data.

In this paper we will confine ourselves to the effects of rotation on heat
transfer in the infinite Prandtl number cases. Not only are these systems
more amenable to analysis but also the variety of physical phenomena poses
a challenge to the background flow method as originally formulated. Indeed,
in its original formulation the method seems insensitive to linear low order
anti-symmetric perturbations such as rotation. The physical effect of very
rapid rotation is to stratify the flow and to totally suppress convective heat
transport. This effect has been proved recently at large but finite rotation
rates in infinite Prandtl number convection in ([21]) using the background
field methodology. The limit of slow rotation is not singular. At fixed rotation
one can recover the large R rigorous logarithmic 1/3 upper bound ([22]). The
situation is complicated though: moderate rotation rates may effectively
increase the heat transfer. This experimental fact ([23]) is consistent with
the fact that the logarithmic 1/3 upper bound diverges at very high rotation
rates; the best known rigorous uniform upper bound valid for all rotation
rates has a higher exponent (2/5) than the bound found in the absence of



rotation. The uniform bound
2
N <~ R3

will be derived in this work. We start with the non-rotating case.

2 Infinite Prandtl Number Equations

The infinite Prandtl number equations for Rayleigh-Bénard convection in
the Boussinesq approximation are a system of five equations for velocities
(u,v,w), pressure p and temperature 7" in three spatial dimensions. The
temperature is advected and diffuses according to the active scalar equation

O +u-V)T = AT (1)

where u = (u,v,w). The velocity and pressure are determined from the
temperature by solving time independent non-local equations of state:

—Au+p, =0, (2)
together with
—Av+p, =0 (3)
and
—Aw+p, = RT. (4)

R represents the Rayleigh number. The velocity is divergence-free
ux+vy+wz:0- <5>

The horizontal independent variables (z,y) belong to a basic square Q C
R? of side L. Sometimes we will drop the distinction between z and y and
denote both horizontal variables x. The vertical variable z belongs to the
interval [0,1]. The non-negative variable ¢ represents time. The boundary
conditions are as follows: all functions ((u,v,w), p, T') are periodic in = and
y with period L; u, v, and w vanish for z = 0, 1, and the temperature obeys
T=0atz=1,T=1at z=0.

We will write

1 1
1717 = 55 [, 17w 2)Pdzdedy
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for the (normalized) L? norm on the whole domain. We denote by Ap the
Laplacian with periodic-Dirichlet boundary conditions. We will denote by
Ay, the Laplacian in the horizontal directions x and y. We will use < --- >
for long time average:

(f) = lim sup 1 t f(s)ds.

t—o00 0

We will denote horizontal averages by an overbar:

JC2) = 13 | fay. dody.

We will also use the notation for scalar product

(f,9) = %/()I/Q(fg)(x,y,z)dxdydz.

The Nusselt number is
N=1+{(w,T)). (6)

One can prove using the equation (1) and the boundary conditions that
N = (|[VT|?) (7)
and using the equations of state (2 - 4) that
(IVul®) = R(N - 1). (8)

This defines a Nusselt number that depends on the choice of initial data;
we take the supremum of all these numbers. The system has global smooth
solutions for arbitrary smooth initial data. The solutions exist for all time
and approach a finite dimensional set of functions. If we think in terms
of this dynamical system picture then the Nusselt number represents the
maximal long time average distance from the origin on trajectories. Because
all invariant measures can be computed using trajectories the Nusselt number
is also the maximal expected dissipation, when one maximizes among all
invariant measures.



3 Bounding the heat flux

We take a function 7(z) that satisfies 7(0) = 1, 7(1) = 0, and write T" =
T+ 0(z,y,2,t). The role of 7 is that of a convenient background; there
is no implied smallness of 6, but of course 6 obeys the same homogeneous
boundary conditions as the velocity. The equation obeyed by 0 is

O +u-V—-—A)O=—-7"—wr 9)
where we used 7/ = 9. We are interested in the function b(z,t) defined by
1
b(z,t) = ﬁ/Qw(-,z)T(-,z)dx.

Its average is related to the Nusselt number:

N—1:</01b(z)dz>.

T-T=60-90

Note that

Also note that from the boundary conditions and incompressibility
w(z,t) =0
and therefore .
bz t) = = /Qw(-, 2)0(-, 2)dz.
From the equation (9) it follows that

N = <—2 /01 7'(2)b(2)dz — HV9H2> + /01 (7'(2))* dz. (10)

Now we are in a position to explain the variational method and some previous
results. Consider a choice of the background 7 that is “admissible” in the
sense that

1
<—2/ 7(2)b(2)dz — Hve|y2> <0
0
holds for all functions 6. Then of course

N < /01 ((2))? dz.
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The set of admissible backgrounds is not empty, convex and closed in the
H?' topology. The background method, as originally applied, is then to seek
the admissible background that achieves the minimum J; (7(2))* dz. Such
an approach would predict N < cR? for this active scalar, just as in the case
of the full Boussinesq system. One can do better. Let us write

b(z,t) LZ/// W, (x, 20, 1)0(x, 2)drdzdzodz . (11)
It follows that

bz, )] < 2% (14 |7l o) Wzl 20w (azsm (do)- (12)

Now we will use two a priori bounds. First, one can prove using (9) and
(8) that there exists a positive constant Ca such that

(126]2) < Cs {RN+/ 2))* + Ra(7'(2))?] dz} (13)
holds. Secondly, one has the basic logarithmic bound ([17])
[wesllzoe < CR(L+|I7]| )1 + log (R AG])]*. (14)

We will describe briefly how to obtain (13) and (14) in the next section.
Using (14) together with (13) in (12) one deduces from (10)

1
N</ ))2dz + CR( + |||l )? [/0 z2|7’1d4

{1+10g+ {RN+/ 2)) + Rz(7'(2 ))2] dzH (15)

Choosing 7 to be a smooth approximation of 7(z) = lg—z for 0 < 2z <4 and
7 =0 for z > ¢ and optimizing in § one obtains

Theorem 1 There exists a constant Cy such that the Nusselt number for the
infinite Prandtl number equation is bounded by

N < Ny(R)

where

No(R) = 1+ CoR"*(1 +log, R)3



The associated optimization procedure consists in the mini-max suggested
by (10) for functions 6 that obey the constraint (13).

Theorem 2 The Nusselt number for the infinite Prandtl number equation is
bounded by the constrained mini-maz procedure

N < inf sup {<—||ve||2 n 2/01 —T’(z)b(z)dz> + /01 (T,(Z))2}

where C; is the set of smooth, time dependent functions € that obey periodic-
homogeneous Dirichlet boundary conditions and the inequality

(18612) < Cx {RNo(R) + [ ()" + Re(r'(2))7] e}

The functions b(z,t) are computed via

1
Wet) = 5 [ [ w200y, 2 drdy
and the functions w(z,y, z,t) are computed by solving
AQw = —RAhQ

with periodic-homogeneous Dirichlet and Neumann boundary conditions.

4 Two inequalities

The inequalities (13) and (14) played an important role. We present here the
ingredients needed to prove them because they are of more general use.

In order to prove (13) using only the bound (8) on the velocity we use
the interpolation inequality

VO 1) < 31101 120|240

that is valid in all dimensions (and can be proved directly by integration by
parts). Multiplying (9) by —A#, integrating by parts in the convective term
and using the divergence-free condition one obtains after long time average
the bound (13).



In order to obtain (14) we write first the equation obeyed by the pressure
in view of (5):

Ap = RT,.

Differentiating and substituting, the equation (4) becomes
A*w = —RA,T. (16)
In view of the incompressibility condition, the boundary conditions are
w(z,y,0) =w'(z,y,0) = w(z,y,1) =w'(z,y,1) = 0. (17)
Denote by (A% )~ f the solution w = (A% )71 f of
A*w = f

with horizontally periodic and vertically Dirichlet and Neumann boundary
conditions w = w’ = 0. Thus, in the infinite Prandtl number system

w,, = —RBO
where
0 2 \—1

The inequality (14) was proved as a consequence of the logarithmic L esti-
mate for the operator B ([17]) given below.

Theorem 3 For any a € (0,1) there exists a positive constant C,, such that
every Holder continuous function 6 that is horizontally periodic and vanishes
at the vertical boundaries satisfies

2
1BO]| 1 < Call6l]z (1 +log, 0]l cos) (18)

The spatial C% norm is defined as

0(X,t)—0(Y,t
Wllone = sup [0(X,0)] + sup HX D= IT D]
X=(2,,2)€Qx[0,1] x| X =Y

The proof ([17]) is based on a decomposition

BO = (I — By + By + B3)By0

9



where

Bi(0) = A (Ap)' 6

and B and Bj are certain singular integral operators. One proves for Bj,
7 =1,2,3 the estimates

1B;0]l s < Callfl|z (1+Tlog, [|6]|co) - (19)
These estimates are well-known for singular integral operators of the classical

Calderon-Zygmund type. The operators B; are not translationally invariant.
They have kernels K,

1
BuO)w.2) = L7 | [ K = .2.0) (B(y.C) — 0. ) dydg
and
1
Bo(0)(.2) = L7 [ [ Kl —y.2.0) (0(4.C) — 0. 1) dydC
and
) 1
By(O)(r.2) = L7 [ [ Kafw —.2,.0) (0(u.C) — 0. 0)) dyC.
The kernels K; can be written as oscillatory sums of exponentials. The

Poisson summation formula and Poisson kernel are used to derive inequalities
of the type

Kz =y, 2,0l < C(lr =y + 2= ¢P) ° (20)
and .,

Koz =y, 2, )l < C (lr =y + 1= ¢P) (21)
and similarly

[Ks(z —y,2,0) <C(lz =y +1¢P) *. (22)

The inequalities (20, 21, 22) are the heart of the matter; once they are proved,
the estimates (19) follow in a straightforward manner.

10



5 Rotation

We assume that the domain D rotates at a uniform angular rate around the z
axis, and we place ourselves in a frame rotating with the domain. We will still
consider the infinite Prandtl number case. The boundary conditions and the
equation (1) for the temperature are the same as in the non-rotating case.
In the presence of rotation the velocity is determined by the temperature
through the Poincaré-Stokes equation of state:

~Au—Ew+p, =0
—Av+E'u+p, =0 (23)
—Aw+p, = RT.

Here E' is the Ekman number. The non-rotating case corresponds formally
to £ = oo. The incompressibility condition (5) is maintained. We denote by
¢ the vertical component of vorticity

¢ =0y — uy. (24)
Taking the divergence of (23) to obtain the equation for the pressure:
Ap — E7'¢ = RT.. (25)
Eliminating the pressure we obtain the analogue of (16)
A*w — E7'(, = —RA,LT (26)

together with
~AC— E 'w, =0. (27)

Incompressibility is used to deduce the boundary conditions
wz(:v y,O t) = wz(x y, 1, )
C(z,9,0,1) = C(z,y,1,) =

From (26) and (27) it is easy to obtain ([21]) bounds for the velocity and
pressure that are uniform for all rotation rates E~!:

- (28)
0

1Aw]® +2IVE|* < R, (29)
lp-II* < 4R? (30)
IVull* + [Vol* + [[Vw|* < R (31)

11



These inequalities hold pointwise in time and are valid in the non-rotating
case as well. Notice that the uniform bound (29) has a very important con-
sequence for strongly rotating (small Ekman number) systems: the vertical
acceleration w, is suppressed. Indeed from (27) it follows that

(AD)_l W, = —EC

and thus w, tends to zero in H~! as E — 0 at fixed R. In order to take
advantage of this observation we need to control the growth of the full gra-
dients of the horizontal components of velocity at the boundaries. This is
achieved ([21]) in the following manner. First we differentiate the equation
for w in (23) with respect to z

_Auz = Eilvz — DPzas (32>
we multiply by u and integrate horizontally:
—ulAu, = E-'vou + pouy. (33)

Secondly, we observe that

—  d (1= d
—ulAu, = — (= 2) — — ;. 4
ulu, = - (2]Vu]2 L (34)

Integrating (33, 34) vertically on [0, 2] using the Dirichlet boundary condition
on u we obtain

1 1 z z

SIVu(L 0B = 3 IVu( )~ — B [ - [ e,

2 2 0 0
and integrating again with respect to z from 0 to 1 we deduce

7 | 2 2 -1

VUl OF = SIVull® + llusll” + E= val[[ull + [pallllusll.— (35)
Now from (35) using the bounds (30), (31) and the Poincare inequality we

obtain
Vu(-,0)2 < C(1+E YR~ (36)

Similar inequalities hold for v and the other boundary z = 1.

12



6 Heat flux in a rotating system

We recall (10)

N = <—2/01 7'(2)b(2)dz — HV9H2> + /01 (7'(2))? dz (37)

and write .
/ 7(2)b(2)dz = —(w., O)
0

where O is ;
Ow,y.2.) = [ 7(5)0(a .5 )ds. (38)
0

Now we replace w, using (27) in order to exhibit the small parameter £

| L ()b(2)dx = B(AC.O) (39)

We need to integrate by parts once and consider a boundary term:

1
/ P()b(2)dz = T + 1T (40)
0
where
[ = —BE(V¢,VO) (41)
and
It is easy to show that
VOl < g[|Vo (43)
where )
1 2
g=|[ -2 ey (44)
0
The first term in (40) is bounded in view of (29)
1] = BI(VC. VO)| < “LR| o) (45)
— : <% -

The second term can be written after one horizontal integration by parts as

I =Ew.( LYo, L) —0.(,1,00,(,1,1). (46)

13



Because © is an integral of 0 it is easy to see that
IVhO(, L)l < GV
where
G =sup|7'(2)] (47)
and
||vh@(v 1vt)||i = |Vh@(7 1at)|2'

is the normalized horizontal L? norm. Using the boundary bound (36) on u,
and v, we deduce that the contribution of the second term is estimated

11| < CGVE? + ER||VY). (48)
Gathering (45) and (48) we obtain
/01 7'(2)b(2)dz| < C{Eg+ GVE®+ E} R||V0)|. (49)
We deduce
/01 T (2)b(2)dz| < C {92E2 + G*(E? + E)} R* + ;||V0||2 (50)

On the other hand, it is not difficult to see using (29) and 0 < T < 1
(maximum principle) in (11) that

| ()b(2)d

This observation allows us to improve the results of ([21]). For any 7 we
may choose to apply either the bound (50) or (51) in the Nusselt number
calculation (37). Let us set

I-(E,R) = min {2C) [¢°E* + G* (E* + E)| R%2C,MR}  (52)

1 3
< CQR/ A (2)|dz (51)
0

where

1
M:/ 22 |7 (2)|dz. (53)
0
Consequently we obtain
1
N < / (7'(2))?dz + T, (B, R). (54)
0

If one chooses 7 to be a smooth approximation of 7 = (1—2)d ! for0 < z < §
and 7=0for 6 <z <1then g=0(6"2), G=0("") and M = O(62).
Optimizing in 7 ([21], [22]) one obtains

14



Theorem 4 The Nusselt number for rotating infinite Prandtl-number con-
vection is bounded by

N -1 S min {Cle, <62E2 + CgE)R2} .

7 Discussion

Rotation has a non-trivial effect on heat transfer in the infinite Prandtl num-
ber convection. The equation determining the vertical velocity from the tem-
perature is

(A% + E?0.05'0.) w = —RA,T

The operator 9,A;'0, is a low order perturbation of A% and both operators
are non-negative in L2. In the absence of rotation (£ = 0o) one has a rigorous
upper bound of the type N <~ R%(log R)g. However, the presently known
rotation independent uniform bound has a higher exponent, N <~ R, If
rotation is increased sufficiently (ERE << 1) for fixed R, then its effect is
to dramatically laminarize the flow and the the heat transfer is due then
exclusively to molecular diffusion: N — 1. On the other hand, for fixed F
one can recover the logarithmic 1/3 bound for large R ([22]), but the bound
diverges for £ — 0; the envelope is finite nevertheless because of the uniform
2/5 bound. These rigorous results capture some of the complexity of the
phenomena.
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