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1 Introduction

The Eulerian description of an incompressible viscous fluid of constant den-
sity and temperature is concerned with the fluid velocity u(x, t) and pressure
p(x, t) recorded at fixed positions x ∈ Rn, n = 3 as functions of time t. The
solutions of the incompressible, inviscid Euler equations can be thought of as
geodesic paths on an infinite dimensional group of transformations ([1]). This
is done using the Lagrangian description. In this description the basic object
is a transformation a 7→ X(a, t) that represents the position x = X(a, t) at
time t of the fluid particle that started at t = 0 from a. At time t = 0 the
transformation is the identity, X(a, 0) = a. An Eulerian-Lagrangian formu-
lation of the Euler equations ([8]) can be written in terms of the inverse map
A(x, t) = X−1(x, t) as

(∂t + u · ∇)A = 0, u = W [A]

where W [A] is the Weber formula ([28], see (1) below). This form of the
classical Euler equations is similar to the active scalar equations of ([11],
[12]).

The viscous Navier-Stokes equations admit an Eulerian-Lagrangian for-
mulation in terms of an appropriate diffusive “back-to-labels”map A and a
virtual velocity v ([9]). The term “virtual” refers to fields that, in the absence
of viscosity, are time independent functions of the Lagrangian labels. (Thus,
if viscosity is absent v(x, t) = u0(A(x, t)).) The presence viscosity does pro-
duce a dynamical change in these fields, and they do not remain passive.
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Using the Eulerian-Lagrangian approach one can prove bounds that hold
for all time for the diffusive map A(x, t), its Eulerian gradient ∇A(x, t) and
even its second derivatives ∇∇A(x, t). The approach to the Navier-Stokes
equations based on the variables A and v also affords a distinction between
the stretching of Eulerian line elements that occurs also in the zero viscosity
case, and the viscosity induced changes in the virtual fields. For short times
and smooth flows the virtual velocity v and the virtual vorticity ζ are nearly
conserved, and in dissipative events, they are expected to decay. A Cauchy
formula for the viscous Navier-Stokes equation and an evolution equation for
the virtual vorticity, in which the stretching term is absent are derived in
([9]). The Cauchy formula expresses the Eulerian vorticity in terms of the
diffusive map A and the virtual vorticity, in the exact same manner as in
the Euler equations. The difference is that the virtual vorticity is no longer
a frozen function of A that does not change in time. The virtual vorticity
may play a useful role in the study of vortex reconnection. Important coef-
ficients C involving second order derivatives of A arise when one computes
the commutator between the Eulerian gradient and the Lagrangian gradient.
These coefficients evolve in time, starting from zero, and enter as basic co-
efficients in the equations obeyed by virtual velocity, virtual vorticity and in
the viscous commutator between the temporal advection-diffusion derivative
and the spatial Eulerian-Lagrangian label derivatives.

In this paper we show that these considerations apply to a large class of
model equations, that include the Navier-Stokes equations as a limiting case.
These models can be characterized as Navier-Stokes equations filtered in a
manner that preserves exactly the vorticity equation ([6]).

2 Active Scalars, Active Vectors and the We-

ber formula

An Eulerian-Lagrangian description of the Euler equations has been used
in ([7], [8]) for local existence results and constraints on blow-up. Local
existence for three dimensional Euler equations is of course classical ([14]).
The paper ([7]) shows that the Beale-Kato-Majda result ([2]) can be inter-
preted as stating that a finite time singularity in the three dimensional Euler
equations implies an incompressible shock in the inverse of the Lagrangian
particle map. The Eulerian-Lagrangian formulation of the Navier-Stokes
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equations ([9]) starts with an Eulerian velocity u(x, t), a three-component
vector ui, i = 1, 2 , 3 that is a function of three Eulerian space coordinates
x and time t. The Eulerian velocity u(x, t) is written as

ui = (∂iA
m)vm − ∂in. (1)

Repeated indices are summed, ∂i is derivative in the i-th Euclidean direction.
The incompressibility

∇ · u = 0 (2)

imposed in the ansatz (1) results in the equation

∆n = ∇ · (∇A)∗v) . (3)

Substituting in (1) one obtains

u = P ((∇A)∗v) . (4)

The notation (∇A)∗ means the transpose of the matrix ∇A and P is the
Leray-Hodge projector on divergence-free functions with matrix elements

Pjl = δjl − ∂j∆−1∂l. (5)

In the absence of viscosity, A is the inverse of the particle trajectory map
a 7→ x = X(a, t). In the presence of viscosity we required this map to obey a
diffusive equation. Note that this is not the conventional Lagrangian particle
picture. In the absence of viscosity, v(x, t) is the initial velocity composed
with the back-to-labels map; in this case (1) is the Weber formula ([28]) that
has been used in numerical and theoretical studies ([16], [17], [21]). We refer
to v as the “virtual velocity”. We associate to a given divergence-free velocity
u(x, t) the operator

∂t + u · ∇ − ν∆ = Γν(u,∇). (6)

We write ∂t for time derivative. The coefficient ν > 0 is the kinematic
viscosity of the fluid. When applied to a vector or a matrix, Γ acts as a
diagonal operator, i.e. on each component separately. The diffusive back-to-
labels map A is required to obey

Γν(u,∇)A = 0. (7)
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By (7) we express therefore the advection and di�usion of A. The maximum
principle holds. The vector

`(x, t) = A(x, t)− x (8)

is referred to as “displacement”. The equation obeyed by `

Γν(u,∇)`+ u = 0 (9)

is obviously equivalent to (7). We discuss periodic boundary conditions

`(x+ Lej, t) = `(x, t),

where ej is the unit vector in the j-th direction. It is important to note that
the initial data for the displacement is zero:

`(x, 0) = 0. (10)

The virtual velocity is required to obey

Γν(u,∇)v = 2νC∇v +Q∗f, (11)

or, more precisely

Γν(u,∇)vi = 2νCm
k;i∂kvm +Qj

ifj. (12)

The vector f = f(x, t) represents the body forces. The boundary conditions
are also periodic

v(x+ Lej, t) = v(x, t)

and the initial data are, for instance

v(x, 0) = u0(x). (13)

The coefficients Cm
k;i are derived from A:

Cm
k;i = (∇A)−1

ji (∂j∂kA
m) .

The reason for the equations (7), (11) is ([9])

Proposition 1. Let u be given by (4) and assume that the displacement
solves (9) and that the virtual velocity solves (11). Then u obeys the incom-
pressible Navier-Stokes equations,

∂tu+ u · ∇u− ν∆u+∇p = f, ∇ · u = 0.
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In the inviscid case the system

(∂t + u · ∇)A = 0; u = W [A]

is an active vector system. The term refers to the fact that the vectors
A obey a pure advection equation and determine their own velocity by a
time independent equation of state. The term active scalar was used in
([11], [12]) and other publications to mean scalar solutions of pure advection
equations that determine their own velocity by a time independent equation
of state. The term was coined as a twist on “pasive scalars”, solutions of
pure advection equations with prescribed velocities. In the active vector and
scalar equations the non-local term enters in a multiplicative fashion (in the
equation of state u = W [A]) and therefore a maximum principle holds. In
the usual Eulerian formulation of the Euler and Navier-Stokes equation in
terms of the velocity, the non-local term, the pressure, enters additively and
a maximum principle for the velocity is not available. A maximum principle
for the velocity would imply regularity for the Navier-Stokes equations.

In ([9]) we derived various bounds for the displacement, its first and
second derivatives, virtual velocities and virtual vorticity. The bounds use
the fact that the active vector formulation has a maximum principle. The
connection with the Kuzmin-Oseledets approach ([22], ([25], [29], [3], [15]
[19], [23], [5], [27], [26], [13]) is the following: the variable w in that approach
(impulse, velicity, magnetization...) is obtained by applying the transposed
Eulerian gradient of A to v, the virtual velocity.

Proposition 2. Let u be an arbitrary spatially periodic smooth function and
assume that a displacement ` solves the equation (9) and a virtual velocity v
obeys the equation (11) with periodic boundary conditions and with C com-
puted using A = x+ `. Then w de�ned by

wi = (∂iA
m)vm (14)

obeys the equation

Γν(u,∇)w + (∇u)∗w = f. (15)

The paper ([27]) is particularly useful for the assessment of the situation
from a computational point of view. The variables w are not convenient for
computations because the presence of the gradient ∇u in the w equation is
responsible for rapid growth of errors. In contrast, the equations for A and
v have no such stretching term, and consequently, their numerical evolution
will be stable.
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3 Filtered viscous fluid equations

We consider the equation

Γν(u,∇)w + (∇u)∗w = 0. (16)

This equation, coupled with the Weber relation

u = Pw (17)

is equivalent to the Navier-Stokes equation. Instead of using the relation (17)
we approximate the Navier-Stokes equation by applying a filter

u = JδPw. (18)

The approximation of identity Jδ is a Fourier multiplier,

(Jδ(q))(x) =
∑

k∈Z3, k 6=0

j(δ|k|)qke
2π
L
ix·k (19)

where
q(x) =

∑
k∈Z3, k 6=0

qke
2π
L
ix·k.

The symbol j is real, strictly positive, decreasing fast to zero at infinity and
normalized, j(0) = 1. We will use

j(λ) = e−λ. (20)

We consider now the equation (16) together with (18). This is a closed
nonlinear system. Note that the Eulerian curl of w, ξ = ∇E × w satisfies

Γν(u,∇)ξ = ξ · ∇u, (21)

that is the exact same equation as the vorticity equation, except that here
the velocity is filtered. Thus, any inviscid filtered Kuzmin-Oseledets equation
can be seen as a particular vortex method, such as the vortex blob method
of Chorin ([6]). In ([24]) the authors show that a certain choice of the blob
smoothing in inviscid two dimensional equations leads to second grade non-
Newtonian fluid equations, or “averaged” Euler equations.
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The three dimensional filtered viscous fluid system has smooth solutions.
The starting point of the proof is the energy balance∫

(∂tw · u)dx+ ν

∫
(∇w · ∇u)dx = 0. (22)

This balance follows from (16) using the fact that u is divergence-free and
the identity

uj(∂jwi)ui + (∂iuj)wjui = ∂j(uj(w · u))

that holds pointwise. Now the fact that J is symmetric and that it commutes
with P implies that

d

2dt

∫
w · udx =

∫
∂tw · u.

Using (22) it follows that

d

2dt

∫
(w · u)dx+ ν

∫
(∇w · ∇u)dx = 0.

Theorem 1. Let u0 be a divergence-free real periodic function

u0(x) =
∑

k∈Z k 6=0

uk(0)e
2π
L
ix·k

belonging to the space Gδ0 of divergence-free functions having J−1
δ0
∈ L2(dx):∑

k 6=0

e2δ0|k||uk(0)|2 <∞

Let δ < δ0 and let ν > 0, T > 0 be given. Then the solution of the equation

Γν(u,∇)w + (∇u)∗w = 0

with
u = JδPw

and initial datum
w0 = J−1

δ u0

exists for all t ∈ [0, T ]. Moreover,

1

2
‖J−

1
2

δ u(·, t)‖2
L2(dx) + ν

∫ t

0

‖∇J−
1
2

δ u(·, s)‖2
L2(dx)ds ≤

1

2
‖J−

1
2

δ u0‖2
L2(dx).
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Note that J
− 1

2
δ = J− δ

2
is a Fourier multiplier and that the spaces Gδ are

Gevrey classes. The uniform inequality in the theorem is thus a very strong
analytic bound, with coefficients that do not deteriorate as δ → 0. A proof
of the theorem can be constructed using Galerkin approximations: One uses
the projector

(PNw)(x) =
∑

k 6=0,|k|≤N

wke
2π
L
ix·k

to devise the truncated equations

∂twN − ν∆wN + PN {uN · ∇wN + (∇uN)∗wN} = 0

with
uN = (JδPwN)

and with initial data
wN(0) = PN

(
J−1
δ Pu0

)
One gathers the uniform bound

1

2
‖J−

1
2

δ uN(·, t)‖2
L2(dx) + ν

∫ t

0

‖∇J−
1
2

δ uN(·, s)‖2
L2(dx)ds ≤

1

2
‖J−

1
2

δ u0‖2
L2(dx).

that comes from the same cancellation in the equation for
∫

(∂twN ·uN)dx as
before. Also one uses the straightforward bound

‖∇uN‖L∞ ≤ bδ‖∇J
− 1

2
δ uN‖L2(dx)

where the N independent constant is given by

bδ =

√ ∑
k∈Z3, k 6=0

e−δ|k|

Then one can start gathering bounds on wN directly using standard energy
methods. One obtains bounds that uniform in N :

sup
t≤T

(‖wN(·, t)‖2
L2 + L2‖∇wN‖2

L2)+

ν

∫ T

0

{
‖∇wN(·, t)‖2

L2(dx) + L2‖∆wN(·, t)‖2
L2(dx)

}
dt ≤ G(δ, u0, ν, T )

Finally one passes to the limit N →∞.

Remark. Different filters lead to the isotropic averaged equations of [4]
and [20].
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4 The Cauchy formula

Let u be any given smooth incompressible velocity field defined on a time
interval [0, T ]. We consider an associated displacement that solves the equa-
tion

Γν(u,∇)`+ u = 0 (23)

with initial datum equal to zero. We associate to ` the corresponding map
A = x + `. The map x 7→ A(x, t) can be used to define the analogue of
Lagrangian differentiation with respect to initial particle position, in Eulerian
coordinates

∇A = Q∗∇E. (24)

Here ∇E is usual Euclidean derivative and

Q(x, t) = (∇A(x, t))−1 . (25)

The detailed expression of the Eulerian-Lagrangian ∇A is

∇A
i = Qj

i∂j (26)

The Eulerian spatial derivatives can be expressed in terms of the Eulerian-
Lagrangian derivatives via

∇E
i = (∂iA

m)∇A
m (27)

While the commutators [∇E
i ,∇E

k ] = 0,
[
∇A
i ,∇A

k

]
= 0 vanish, the cross-

commutators between Eulerian-Lagrangian and Eulerian derivatives do not
vanish, in general: [

∇A
i ,∇E

k

]
= Cm

k;i∇A
m. (28)

The coefficients Cm
k;i are given by

Cm
k;i = ∇A

i (∂k`
m). (29)

Note that

Cm
k;i = Qj

i∂j∂kA
m = ∇A

i (∇E
k A

m) = [∇A
i ,∇E

k ]Am.
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The commutator coefficients C are related to the Christoffel coefficients Γmij
of the trivial flat connection in R3 computed at a = A(x, t) by the formula

Γmij = −Qk
jC

m
k;i.

The matrix ∇A(x, t) is invertible. The equation obeyed by ∇A follows from
(23)

Γ(∇A) + (∇A)(∇u) = 0. (30)

The product (∇A)(∇u) is matrix product in the order indicated. The inverse
matrix Q = (∇A)−1 obeys

ΓQ = (∇u)Q+ 2νQ∂k(∇A)∂kQ. (31)

The commutator coefficients Cm
k;i enter also in the commutation relation be-

tween the Eulerian-Lagrangian label derivative and Γν(u,∇):[
Γ,∇A

i

]
= 2νCm

k;i∇E
k∇A

m (32)

The evolution of the coefficients Cm
k;i defined in (29) can be computed using

(30) and (32):
Γ
(
Cm
k;i

)
= −(∂lA

m)∇A
i (∂k(u

l))

−(∂k(ul))C
m
l;i + 2νCj

l;i · ∂l
(
Cm
k;j

)
. (33)

Note that the initial datum vanishes. The determinant of ∇A obeys

Γν(u,∇) (logDet(∇A)) = ν
{
C i
k;sC

s
k;i

}
. (34)

Note, again, that the initial datum vanishes. Also, note that the kinematic
viscosity and commutator coefficients determine the extent of volume distor-
tion. The commutator coefficients are used to define a virtual velocity v by
solving the equation

Γν(u,∇)vi = 2νCm
k;i∇E

k vm. (35)

The variable w = (∇A)∗v satisfies the equation (16). Let us consider the
Eulerian-Lagrangian curl of v:

ζ = ∇A × v. (36)
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This virtual vorticity ζ is related to the anti-symmetric part of the Eulerian-
Lagrangian gradient of v by the familiar formulae

∇A
i vm −∇A

mvi = εimpζp, ζp =
1

2
εimp

(
∇A
i vm −∇A

mvi
)
.

We will use the mechanics notation

wi,j = ∂jwi = ∇E
j (wi).

Differentiating wi = Am,i vm we get

wi,j = Am,i vm,j + Am,ijvm = Am,i vm,j − Am,j vm,i + wj,i.

Using (27) we deduce

wi,j − wj,i =
1

2

(
Am,i A

p
,j − Am,jA

p
,i

)
εpmrζr. (37)

The Eulerian curl of w, ∇E × w obeys therefore

(
∇E × w

)
q

=
1

2
εqij

(
Det

[
ζ;
∂A

∂xi
;
∂A

∂xj

])
(38)

Because of the linear algebra identity

((∇A)−1ζ)q = (Det(∇A))−1 εqij
2

(
Det

[
ζ;
∂A

∂xi
;
∂A

∂xj

])
one has

∇E × w = (Det(∇A)) (∇A)−1ζ. (39)

The relations (38, 39) are the analogue of the viscous Cauchy formula
([9]). In two-dimensions (38, 39) become(

∇E
)⊥
w = (Det(∇A)) ζ. (40)

A consequence of (38) or (39) is the identity(
∇E × w

)
· ∇E = (Det(∇A)) (ζ · ∇A) (41)
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that generalizes the corresponding identity ([9]). These identities hold in the
forced case also.

Let us consider, for any pair (q,M), where q ∈ R3, M ∈ GL(R3) are,
respectively, a vector and an invertible matrix, the expression

C(q,M) = (DetM)M−1q. (42)

This expression, underlying the Cauchy formula, is linear in q and quadratic
in M ,

C(q,M)i =
1

2
εijkDet (M. ,i,M. ,j, q) . (43)

The quadratic expression in the right hand side is defined for any matrix M .
It is easy to check that

C(q,MN) = C (C(q,M), N) (44)

and

C(q, I) = q (45)

hold, so C describes an action of GL(R3) in R3. A third property follows
from the explicit quadratic expression (43)

C(q,1 +N) = (1 + Tr(N))q −Nq + C(q,N) (46)

Here N is any matrix, and the meaning of C(q,N) is given by (43). If we
consider, instead of vectors q and matrices M , vector valued functions q(x, t)
and matrix valued M(x, t) and use the same formula

C(q,M)(x, t) = C(q(x, t),M(x, t)) = (Det(M(x, t)) (M(x, t))−1 q(x, t) (47)

then the properties (44, 45, 46) as well as (43) obviously still hold.
We derive now the evolution of ζ. We start with (35) and apply the

Eulerian-Lagrangian curl. We use the notation

vi;j = ∇A
j vi

(thus for instance Cm
k;i = (Am,k);i) Applying ∇A

j to (35), and using (32) we
obtain

Γν(u,∇)vi;j = 2ν
(
Cm
k;ivm,k

)
;j

+ 2νCm
k;j∇E

k vi;m. (48)
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Multiplying by εqji and using the fact that

(Cm
k;i);j = (Cm

k;j);i

we deduce

Γν(u,∇)ζq = 2νCm
k;j∇E

k (εqjivi;m) + 2νCm
k;iεqji∇E

k (vm;j)

+2νCm
k;iεqji

(
∇A
j ∇E

k −∇E
k∇A

j

)
vm.

Now we write

vi;m =
1

2
(vi;m − vm;i) +

1

2
(vi;m + vm;i)

and substitute in the first two terms above. The symmetric part cancels, the
anti-symmetric part is related to ζ. We obtain

Γζq = νCm
k;j∇E

k (εqjiεrmiζr) + νCm
k;i∇E

k (εqjiεrjmζr) +

+2νCm
k;iεqji

(
∇A
j ∇E

k −∇E
k∇A

j

)
vm.

Using now the commutation relation (28) and the rule of contraction of two
εijk tensors we get the equation

Γζq = 2νCm
k;m∇E

k ζq − 2νCq
k;j∇

E
k ζj + νCm

k;iC
r
k;jεqjiεrmpζp. (49)

When ν = 0 we obtain the fact that Γζ = 0. Moreover, ζ obeys a linear
dissipative equation with Cm

k;i as coefficients. This equation and its derivation
is the same as in ([9]) where u is a solution of the Navier-Stokes equation.
Using the Schwartz inequality, we obtain pointwise

Γ|ζ|2 + ν|∇Eζ|2 ≤ 17ν|C|2|ζ|2 (50)

where
|C|2 = Cm

k;iC
m
k;i, |ζ|2 = ζqζq

are squares of Euclidean norms. This shows that ζ decreases significantly if
it develops large gradients.

All these considerations apply to arbitrary u without having to impose
the equation of state (1). It is the relation (1) that decides whether or not we
are solving the Navier-Stokes equation. If u is a solution of the Navier-Stokes
equation then u = Pw from (1), so that ∇E × u = ∇E × w and then the
Cauchy formula (38) relates the vorticity ω(x, t) = ∇E × u(x, t) to ζ ([9]).
All the filtered fluid equations of this kind obey a viscous Cauchy formula:
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Theorem 2. The solutions w of the system

Γν(u,∇)w + (∇u)∗w = 0, u = JδPw

are given by
w = (∇A)∗v

where A = x+ ` solves
Γν(u,∇)A = 0

and v solves
Γν(u,∇)v = 2νC∇v.

The Eulerian curl of w, ξ = ∇E × w is related to the Eulerian-Lagrangian
curl of v, ζ = ∇A × v by the viscous Cauchy formula

ξ = Det(∇A) (∇A)−1 ζ.
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