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Abstract. We provide a stochastic interpretation of a result of
decay of generalized relative entropies that was discovered by Michel,
Mischler and Perthame

1. Introduction

Relative entropies have been used for a long time in kinetic theory
and conservation laws. The decay of relative entropies was usually lim-
ited to stable situations in which a global attracting steady solution
exists ([9]). Recently, Michel, Mischler and Perthame ([8]) discovered
a remarkable property of certain unstable linear systems, in which de-
cay of relative entropies can exist under certain circumstances. They
applied their observation to population dynamics models but the list
of application grows. The author of the present note learned of this re-
markable property in a talk given by B. Perthame ([7]) and was struck
both by the property and by a statement of the speaker to the ef-
fect that the proof is computational and does not reveal the reasons
behind the property. A first attempt to make the proof more concep-
tual ([1]) resulted only in a generalization and a formalization of what
was basically the original proof, and to applications to Smoluchowski
equations. In this note we present the stochastic underpinning of the
phenomenon, and provide a more conceptual understanding. Namely,
the property is a consequence of the existence of stochastic integrals
of motion. The use of stochastically passive scalars and the existence
of stochastic integrals of motion can be used to prove the decay of
generalized relative entropies in more complicated situations, when the
principal part of the diffusion operator does not have constant coeffi-
cients ([2]), but that proof requires a substantial technical treatment.
The purpose of this note is to explain the phenomenon in the simplest
setting.
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2. Generalized relative entropies

We consider a linear operator

(1) Dρ = ∆xρ− divx(Uρ) + V ρ

in Rn, where

(2) U(x, t) = (Uj)j=1,...n

is a smooth function and V = V (x, t) is a smooth scalar potential. We
will write D also in the form

(3) Dρ = ∆xρ− U · ∇xρ+ Pρ

where

(4) P = V − divx(U).

The formal adjoint of the operator D in L2(Rn) is

(5) D∗φ = ∆xφ+ U · ∇xφ+ V φ.

The following is a result of Michel, Mischler and Perthame:

Theorem 1. ([7],[8]) Let f be a solution of

(6) ∂tf = Df
and let ρ > 0 be a positive solution of the same equation,

(7) ∂tρ = Dρ.
Let H be a smooth convex function of one variable and let φ be a non-
negative function obeying pointwise

(8) ∂tφ+D∗φ = 0.

Then

(9)
d

dt

∫
H

(
f

ρ

)
φρdx ≤ 0.

3. Stochastic representation

We take X(a, t) solutions of the SDE ([5]), ([6])

dX = U(X, t)dt+
√

2dW

with X(a,0) = a, and dW standard Brownian motion in R3,

W0 = 0, 〈W i
t ,W

j
s 〉 = min (t, s) δij.

Because the Brownian motion is uniform in space, ∂aX obeys an ODE,
and it follows that

(10)
d

dt
log det(∂aX) = divx(U)x=X(a,t)
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is true pathwise, (a.s.). We denote the spatial inverse by A(x, t), A =
X−1. The spatial inverse exists and is smooth ([4]).

Theorem 2. We consider the stochastic function

(11)
ψf0(x, t) =

f0(A(x, t)) exp
{∫ t

0
V (X(a, s), s)ds|a=A(x,t)

}
det(∇xA)(x, t).

Then ψ = ψf0 solves

(12) dψ + (∇x · (Uψ)−∆xψ − V ψ) dt+
√

2∇xψ · dW = 0

with initial datum ψ(x, 0) = f0(x).

The proof follows from the Itô formula and the equation ([3]), ([4])

(13) dA+ (U · ∇xA−∆xA)dt+
√

2∇xA · dW = 0

obeyed by A. We note first that

(14) ψf0 = f0(A) exp

{∫ t

0

P (X(a, s), s)ds|a=A(x,t)

}
holds. Indeed, (14) follows by integrating (10) in time and using

[det(∂aX)]−1
|a=A(x,t) = det(∇xA)(x, t),

that holds pathwise. Now, from (13) it follows that

χ = f0(A)

is a stochastically passive scalar, by which we mean a solution of the
stochastic Lagrangian transport equation

(15) dχ+ (U · ∇xχ−∆χ) dt+
√

2∇xχ · dW = 0.

Stochastically passive scalars form an algebra: sums and products of
stochastically passive scalars are stochastically passive. The fact that
the product of stochastically passive scalars is stochastically passive
is nontrivial and follows from a cancellation induced by the quadratic
variation of the martingale part of the second order equations obeyed
by them.

From (14), using (15) and stochastic calculus ([6]) we deduce now
(12). Indeed, the function

I(a, t) = exp {
∫ t

0

P (X(a, s), s)ds}

obeys
∂tI(a, t) = P (X(a, t), t)I(a, t)

pathwise. Then, a calculation ([3]), ([4]) shows that the function

E(x, t) = I(A(x, t), t)
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solves

dE + (U · ∇E − PE −∆E)dt+
√

2∇E · dW = 0.

Because P = V − divx(U) we have

dE + (divx(UE)− V E −∆E)dt+
√

2∇E · dW = 0.

The function ψf0 is the product

ψf0 = χE,

and therefore, from Itô’s formula

dψf0 = Edχ+ χdE + d〈E, χ〉

and the equations obeyed by E, χ, we have

dψf0 =
(−divx(Uψf0) + V ψf0 + E∆xχ+ χ∆xE + 2∇xE · ∇xχ)dt

−
√

2∇xψf0 · dW.

This gives (12), and finishes the calculation.

4. Stochastic integrals of motion.

Proposition 1. Consider a deterministic function φ that solves (8).
Then the function

(16) M(a, t) = φ(X(a, t), t) exp

{∫ t

0

V (X(a, s), s)ds

}
is a martingale.

Indeed, by Itô

dM(a, t) = exp
{∫ t

0
V (X(a, s), s)

}{
∇xφ(X(a, t), t) · dX + φ(X(a, t), t)V (X(a, t), t))dt
+1

2
∇x∇xφ(X(a, t), t)d〈X,X〉+ ∂tφ(X(a, t), t)dt

}
holds because because exp

{∫ t

0
V (X(a, s), s)ds

}
is BV. Now, using the

equation (8) we have

dM(a, t) =√
2∇xφ(X(a, t), t) exp

{∫ t

0
V (X(a, s), s)ds

}
dW

that is, M is the martingale

M(a, t) =

φ(a, 0) +
∫ t

0

√
2∇xφ(X(a, s), s) exp

{∫ s

0
V (X(a, τ), τ)dτ

}
dWs.
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Using this fact and the representation (11), it follows that

ψρ0(x, t)φ(x, t)H
(
ψf0

(x,t)

ψρ0 (x,t)

)
=

ρ0(A(x, t))H
(
f0(A(x,t))
ρ0(A(x,t))

)
M(A(x, t), t)det(∇xA)

holds. Thus, the quantity of interest, ψρ0φH
(
ψf0

ψρ0

)
, is the product of

a stochastically passive scalar, a martingale composed with A and the
Jacobian det(∇xA). Consequently, we have almost surely
(17)∫

ψρ0(x, t)H

(
ψf0(x, t)

ψρ0(x, t)

)
φ(x, t)dx =

∫
ρ0(a)H

(
f0(a)

ρ0(a)

)
M(a, t)da.

The expected value is then constant in time:

(18)
d

dt
E

{∫
ψρ0H

(
ψf0
ψρ0

)
φdx

}
= 0.

5. Proof of decay

If we denote

(19) f(x, t) = Eψf0(x, t)
and

(20) ρ(x, t) = Eψρ0(x, t)
we have from (12) that f solves (6), ρ > 0 solves (7). We prove that
we have (9).

The starting point is (18). In view of (19) and (20), the statement
that needs to be proved is

(21)

∫
E (ψρ0)H

(
E(ψf0)

E(ψρ0)

)
φdx ≤ E

{∫
ψρ0H

(
ψf0
ψρ0

)
φdx

}
The conservation (18) works for any H, but we expect (21) to hold
only for convex H. Indeed, (21) can be reduced to a Jensen inequality.
We claim more, that for all x, t we have

(22) E (ψρ0)H

(
E(ψf0)

E(ψρ0)

)
≤ E

{
ψρ0H

(
ψf0
ψρ0

)}
Considering the functions

(23) g =
ψρ0

E(ψρ0)

and

(24) v =
ψf0

E(ψρ0)
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we see that (22) becomes

(25) H (E(v)) ≤ E
{
gH

(
v

g

)}
.

This, however, is nothing but Jensen’s inequality for the probability
measure

Ph = E(gh),

H

(
P

(
v

g

))
≤ PH

(
v

g

)
.

6. Appendix: direct proof

For the sake of completeness, we present here a direct proof. This is
a calculation ([1]), similar to the original proof of ([8]), but organized
somewhat differently. We associate to D and to the scalar positive
function ρ the operator Dρ defined by

(26) Dρh =
1

ρ2
∂i

(
ρ2∂ih

)
− U · ∇xh.

The proof has two ingredients, the first of which is a pointwise inequal-
ity:

Lemma 1. Let h = H
(
f
ρ

)
with H convex, let f solve (6) and let ρ > 0

solve (7). Then

(27) ∂th−Dρh ≤ 0

The lemma is easily verified. In fact, the identity

∂th−Dρh =

(28)

−H ′′
(
f

ρ

) ∣∣∣∣∇x

(
f

ρ

)∣∣∣∣2 +

{
1

ρ
(∂tf −Df)− f

ρ2
(∂tρ−Dρ)

}
H ′

(
f

ρ

)
holds for all smooth functions f, ρ where ρ 6= 0. The second ingredient
concerns the formal adjoint of Dρ:

Lemma 2. If Dρ is associated to ρ > 0, then

(29) D∗
ρ(φρ) = ρD∗φ− φDρ

holds pointwise for any smooth function φ.

Indeed,

(30) D∗
ρ (ρφ) = ∂j

(
ρ2∂j

(
φ

ρ

))
+ divx (Uφρ)
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and therefore we obtain using (5) and (3))

D∗
ρ (ρφ) = ρ (∆xφ+ divx(Uφ))− φ (∆xρ− U · ∇xρ) =

= ρD∗φ− φDρ.
The proof of the theorem follows now from the two lemmas. Using

the notation h = H
(
f
ρ

)
as above we have

d

dt

∫
φρhdx =

∫
{(φ∂tρ+ ρ∂tφ)h+ φρ [Dρh]} dx+

∫
φρ(∂th−Dρh)dx

Using the first lemma we have

d

dt

∫
φρhdx ≤

∫ [
φ∂tρ+ ρ∂tφ+D∗

ρ(φρ)
]
hdx

and using the second lemma we conclude

d

dt

∫
φρhdx ≤

∫
(∂tφ+D∗φ)ρhdx+

∫
(∂tρ−Dρ)φhdx ≤ 0.

Note that if H ≥ 0 then φt + D∗φ ≤ 0 is sufficient. This proof gener-
alizes easily to variable diffusion coefficients ([1]).
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