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1 Introduction

We discuss the surface 2D quasi-geostrophic (QG) equation

00 +u-VO+r(—A)*0 =0, z€R* t>0, (1.1)
where @ > 0 and k > 0 are parameters, and the 2D velocity field u = (uy,us) is
determined from 6 by the stream function v via the auxiliary relations

(1, 2) = (=000, 00 ¥),  (—A)2¢ = —0. (1.2)

Using the notation A = (—A)2 and V& = (8,,, —0,,), the relations in (1.2) can be
combined into

u=VrAT0 = (—Ry0,R.0), (1.3)

where R, and R, are the usual Riesz transforms in R%2. The 2D QG equation with
> 0 and a = § arises in geophysical studies of strongly rotating fluids (see [5],[15] and
references therein) while the inviscid QG equation ((1.1) with x = 0) was derived to

model frontogenesis in meteorology, a formation of sharp fronts between masses of hot
and cold air (see [7],[10],[15]).

The problem at the center of the mathematical theory concerning the 2-D QG equa-
tion is whether or not it has a global in time smooth solution for any prescribed smooth
initial data. In the subcritical case o > %, the dissipative QG equation has been shown
to possess a unique global smooth solution for every sufficiently smooth initial data
(see [8],[16]). In contrast, when a < I, the issue of global existence and uniqueness is
more difficult and has still unanswered aspects. Recently this problem has attracted a
significant amount of research ([1],[2],[3],[4],[5].[6],[9], [11],[12],[13],[14],[17],[18],[19],[20],
21],[22],[23]). In Constantin, Cérdoba and Wu [6], we proved in the critical case (a = 1)
the global existence and uniqueness of classical solutions corresponding to any initial data
with L*°-norm comparable to or less than the diffusion coefficient . In a recently posted
preprint in arXiv [13], Kiselev, Nazarov and Volberg proved that smooth global solu-
tions exist for any C°° periodic initial data, by removing the L*°-smallness assumption
on the initial data of [6]. Caffarelli and Vasseur (arXiv reference [1]) establish the global
regularity of the Leray-Hopf type weak solutions (in L>((0, 00); L2) N L2((0, 00); H/2))
of the critical 2D QG equation with a = % in general R".

In this paper we present a regularity result of weak solutions of the dissipative QG
equation with a < % (the supercritical case). The result asserts that if a Leray-Hopf
weak solution 6 of (1.1) is in the Holder class C° with § > 1 — 2 on the time interval
[to,t], then it is actually a classical solution on (to,t]. The proof involves representing
the functions in Holder space in terms of the Littlewood-Paley decomposition and usin
Besov space techniques. When 6 is in C?, it also belongs to the Besov space é;ff;o‘z/ P

for any p > 2. By taking p sufficiently large, we have § € C°' N éﬁ}oo for 6; > 1 — 2au.



The idea is to show that 8§ € C% N ég?m with d5 > ;. Through iteration, we establish
that § € C'7 with v > 1. Then 6 becomes a classical solution.

The results of this paper can be easily extended to a more general form of the quasi-
geostrophic equation in which x € R™ and u is a divergence-free vector field determined
by 6 through a singular integral operator.

The rest of this paper is divided into two sections. Section 2 provides the definition
of Besov spaces and necessary tools. Section 3 states and proves the main result.

2 Besov spaces and related tools

This section provides the definition of Besov spaces and several related tools. We start
with a some notation. Denote by S(R™) the usual Schwarz class and S'(R™) the space
of tempered distributions. f denotes the Fourier transform of f, namely

fier = [ e
The fractional Laplacian (—A)® can be defined through the Fourier transform

() f = [E[** F(&).
Let
80:{¢€S, ¢(z)x"dx = 0, \7\:0,1,2,'--}.
Rn
Its dual & is given by
S, =8/Sy =8'/P,

where P is the space of polynomials. In other words, two distributions in &’ are identified
as the same in &) if their difference is a polynomial.

It is a classical result that there exists a dyadic decomposition of R™ namely a
sequence {®,} € S(R™) such that

supp EI\DJ- C A, ij({) = EI\>0(2_j§) or Q;(x)= 2j"(1>0(2jx)
and

SN 1 if€eR™\ {0},

k=—o0

where

Aj={¢eR": 271 < ¢ < 27H1}
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As a consequence, for any f € S,

Y Bpxf=f (2.1)

k=—0oc0

For notational convenience, set
ANif=P;xf, j=0,%£1,£2---. (2.2)

Definition 2.1 For s € R and 1 < p,q < oo, the homogeneous Besov space é;,q 18
defined by

By, ={f €8 Iflls,, < oo},

(X (@ 1aisl)) " ora<os

‘] .
sup 2% || A f || v for ¢ = oc.
J

where

1£ll5,, =

For A; defined in (2.2) and S; = 3, _; Ay,
AAL =0 if|[j—k|>2 and Ay(SifAf) =0 if|j—k| >3,

The following proposition lists a few simple facts that we will use in the subsequent
section.

Proposition 2.2 Assume that s € R and p,q € [1, 00].
1) If1<q <@g <00, then B5 C B*

p,q1 p,q2°
2) (Besov embedding) If 1 < p; < py < 00 and s = $3 + n(
B (R") C B2 (R).

P1,9 p2,9

LY then

1 _
p1 p2

3) If 1 < p< oo, then ]
BS

p,min(p,2

y CWH C By ax(p2)s

p,max
where WP denotes a standard homogeneous Sobolev space.
We will need a Bernstein type inequality for fractional derivatives.
Proposition 2.3 Let a > 0. Let 1 <p < g < 0.
1) If f satisfies R
supp f C{§ e R": [¢] < K2/},

for some integer j and a constant K > 0, then

1

I(=2)° fllzaeny < C1 227670 £l ogeen)-



2) If [ satisfies R
supp f C{€ € R": K27 < |¢] < K27} (2.3)

for some integer j and constants 0 < Ky < Ko, then
Cy 29| || gy < [[(=2)* fllzagny < Co 279G £ Loam,
where Cy and Cy are constants depending on o, p and q only.

The following proposition provides a lower bound for an integral that originates from
the dissipative term in the process of LP estimates (see [20],[4]).

Proposition 2.4 Assume either « >0 andp =2 or0 < a <1 and2 <p<oo. Let j
be an integer and f € S'. Then

AGFIP2AGf NN f do > C 22| A f 1
R

for some constant C' depending on n, a and p.

3 The main theorem and its proof

Theorem 3.1 Let 0 be a Leray-Hopf weak solution of (1.1), namely
0 € L>([0,00); L*(R?)) N L*([0, 00); H*(R?)). (3.1)
Let 6 >1—2a and let 0 < tg <t < oo. If
0 € L>([to, t]; C°(R?)), (3.2)

then
0 € C™((to,t] x R?).
Proof.  First, we notice that (3.1) and (3.2) imply that
NS Lw([tO’ t]’ ég,loo(R2))7

for any p > 2 and 6, = §(1 — 2). In fact, for any 7 € [to, 1],
16C, Tl go, = sup27(|A;0] Lo
’ J

. 1—-2 2
< sup 27| A50]| 1o 14,017
J

1—-2 2
< [10CDles” 16C Tz
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Since 0 > 1 — 2a, we have §; > 1 — 2a when

20

P=Po= 50 " 0a)

Next, we show that .
0 € L= ([to, t]; B, N C™)
implies

0(-,t) € B2 _nC™

,O0

for some dy > d; to be specified. Let j be an integer. Applying A; to (1.1), we get
3,5AJ(9 -+ KZAQQAJ‘Q = —AJ<U . VG) (33)
By Bony’s notion of paraproduct,

ANj(u-V0) = > Aj(Seau- VAG) + > Aj(Agu- VSe16)

li—k[<2 li—k|<2

+ )0 Aj(Agu-VAW). (3.4)

k>j—1 |k—1|<1
Multiplying (3.3) by p|A;0[P~2A 0, integrating with respect to x, and applying the lower
bound
[ 1P as s A do = C2A £
Rd
of Proposition 2.4, we obtain

d ,
SNASIE, + Ch2 AN < I+ L+ I, (3.5)

where [, I and I3 are given by

L=y / 101200 - Aj(Sp_yu - VALD) do,
li—k|<2

]2 = —p Z /|Aj0|p_2Aj0'Aj(AkU'VSk_lg)dx,
li—k|<2

[3 = —pP Z /|Aj9|p_2Aj9' Z A](AkUVAle)dCL’
k>j—1 |[k—1I<1

We first bound I,. By Holder’s inequality

L < CIN015" > I Akulle |V Sk16]| e

li—k|<2
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Applying Bernstein’s inequality, we obtain

L < Ol Y 18wl Y 27 Anb]l

li—k|<2 m<k—1
< CIAIT" D0 ([ Akl 207008 Y 2T RO=agmi AL G o
li—k|<2 m<k—1

Thus, for 1 — d; > 0, we have
I < CIAON 0llon Y 1Akl 20 °0F,
li—k|<2

We now estimate I;. The standard idea is to decompose it into three terms: one with
commutator, one that becomes zero due to the divergence-free condition and the rest.
That is, we rewrite I; as

L = —p Y. /]A]H\pQAj@-[Aj,Sk1u-V]Ak9dx
lj—k|<2
—p/ |Aj¢9|p72Aj9 : (S]u : VAJQ) dx
= / 1807200 - (Sk_1u — Sju) - VA; AL d

l7—k[<2
= Iy + Lo+ L3,

where we have used the simple fact that >, ., ApA;60 = A0, and the brackets []
represent the commutator, namely

[Aj, Sk_lu : V]A,ﬁ = Aj(Sk_l’LL : VAkQ) — Sk_lu . VA]Ake

Since u is divergence free, [15 becomes zero. I;5 can also be handled without resort to
the divergence-free condition. In fact, integrating by parts in 15 yields

Iy = / APV - Sude < [ABIEY - Syull e

By Bernstein’s inequality,

Ll < 12005 Y 271 Anu] e

m<j—1

= ||Aj9”1£p2(1—51)j Z 9(1=d1)(m—j) QmEIHAmUHLw-

m<j—1
For 1 —6; > 0,

Lol < C ;015,20 flull s < C A0 20707 (161 o0l
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We now bound [y; and I;3. By Holder’s inequality,
1] < plIAOIT D 1A, Skoru - VIAK Lo
l7—k|<2

To bound the the commutator, we have by the definition of A;
[Aj, Sk-1u - V]ARY = /q’j (= y) (Sk—1(u)(x) = Sk-1(u)(y)) - VAH(y) dy.

Using the fact that § € C% and thus
1Sk-1 () (@) = Sp-1(w) (Y)l|z= < Nulleor |2 —yI™,

we obtain .
1A, Sk-1t - V1AW o < 27 [Juf| oy 2" || AxB] v
Therefore,
[Tl < Cp 80117 27 [lulless D 281240 1o
li—k<2
The estimate for I3 is straightforward. By Holder’s inequality,
Lsl < pllAO05" D (1Sk-1u — Sjull ]| VA0
li—k|<2
< Cp |05 207 0lleor D Akl
li—k|<2
We now bound 3. By Holder’s inequality and Bernstein’s inequality,
LI < pIAOIL AV (S D Awa)
k>j—1|1—k|<1
< pllAOIE 2 llulles Y 27| AL (3.6)
k>j—1

Inserting the estimates for I;, I and I3 in (3.5) and eliminating p||A;6[/%," from both
sides, we get

d y oo
Al + Cx227| A0l e < C207 116 s lullcs,

+O270 [luflesr > 28 A0 1o

li—k|<2

+C0llon Y 1A 20"

li—k|<2
+C 20 l6lles D 1Akl e

li—k|<2

+C 2 ullgs > 27| A o (3.7)

k>j—1



The terms on the right can be further bounded as follows.

C27 ullgs > 2[A0)e = C2O7P lulls, Y 27K AL|, 200D

iR Uk
< C207 lufl g 10| 51,
D,00

Cllolles > N1Akul|p20 =% = €202 |10]| sy Y 27K Agu]| 1 200707200

l7—k|<2 li—k|<2
< C20729) 0] gy Nlull g,
p,o0

C207 e Y Al = C207Plles Y 2| Agul|ze 20707

l7—k|<2 li—k|<2

< C2U727110]| oy (lul o
p,00
and
CUlullon > 2% A0y = C2072Juflgs, Y 2720 ED20R A0 1
k>j—1 k>j—1

< C20 2 ul oy 0] 51 -
p,00
We can write (3.7) in the following integral form

18;0(1) |0 < e CFEVE0 | A0(tg) | 1o

t ) .
+C / 6_CR220¢J (t_5)2(1—251)J(||0||051 ||U||ng}oo + ||U||Ct§1 ||0||ég}oo) ds.

to

Multiplying both sides by 2(2¢+201=1i and taking the supremum with respect to j, we
get

He(t)”éwlwaq < Sup{ean22aj(t7to)2(61+2a71)j} He(to)Hé‘ﬁ
p,00 ] p,o0
+Cr 7 sup{ (1 — e F )} max [10(s)]| 5o [10(5) e
j s€to,t] p,o0
Here we have used the fact that
[ullesr < [|0]lcsr  and  [lul g5 < [|0]] g
p,00 p,00
Therefore, we conclude that if

0 € L®([to, t]; B2, N C™),
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then o
0(-,t) € BT, (3.8)

Since §; > 1 — 2a, we have 20; + 2a — 1 > 4¢; and thus gain regularity. In addition,
according to the Besov embedding of Proposition 2.2,

B£5010+2a— 1 C B52

where 5 5
52:2(51+20é—1——:51+ (51— (1—20&+—>)
p p
We have 9 > §; when )
> = .
p P 51—(1—205)

Noting that
B%:_ _NL*=C*

we conclude that, for p > max{po, p1},
0(-,t) € B2 nC™

for some 5 > 0;. The above process can then be iterated with 0; replaced by d,. A
finite number of iterations allow us to obtain that

0(-t) € C

for some v > 1. The regularity in the spatial variable can then be converted into regu-
larity in time. We have thus established that 6 is a classical solution to the supercritical
QG equation. Higher regularity can be proved by well-known methods.
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