Higher Order Log-Concavity in Euler's Difference Table

William Y.C. Chen, Cindy C.Y. Gu, Kevin J. Ma and Larry X.W. Wang

Abstract: For $0 \le k \le n$, let e^k_n be the entries in Euler's difference table and let $d^k_n = e^k_n/k!$. Dumont and Randrianarivony showed e^k_n equals the number of permutations on [n] whose fixed points are contained in $\{1, 2, ..., k\}$. Rakotondrajao found a combinatorial interpretation of the number d^k_n in terms of k-fixed-points-permutations of [n]. We show that for any $n \ge 1$, the sequence $\{d^k_n\}_{0 \le k \le n}$ is both 2-log-concave and reverse ultra logconcave.

AMS Classification: 05A20; 05A10

Keywords: log-concavity, 2-log-concavity, reverse ultra log-concavity, Euler's difference table

Download: PDF

Return