Proof of Moll's Minimum Conjecture

William Y. C. Chen and Ernest X. W. Xia

Abstract: Let $d_{i}(m)$ denote the coefficients of the Boros-Moll polynomials. Moll's minimum conjecture states that the sequence $\left\{i(i+1)\left(d_{i}^{2}(m)-d_{i-1}(m) d_{i+1}(m)\right)\right\}_{l \leqslant i \leqslant}$ m attains its minimum at $i=m$ with $2^{-2 m} m(m+1)_{\binom{2 m}{m}}$. This conjecture is a stronger than the log-concavity conjecture of Moll proved by Kauers and Paule. We give a proof of Moll's conjecture by utilizing the spiral property of the sequence $\left\{d_{i}(m)\right\}_{0 \leqslant}$ $i \leqslant m$, and the log-concavity of the sequence $\left\{i!d_{i}(m)\right\}_{0 \leqslant i \leqslant m}$.

AMS Classification: 05A20; 11B83; 33F99

Keywords: ratio monotonicity, log-concavity, Boros-Moll polynomials

Download: PDF

