Ordered Partitions Avoiding a Permutation Pattern of Length 3

William Y.C. Chen, Alvin Y.L. Dai, and Robin D.P. Zhou

Abstract: An ordered partition of $[n]=\{1,2, \ldots, n\}$ is a partition whose blocks are endowed with a linear order. Let $O P_{n, k}$ be set of ordered partitions of $[n]$ with k blocks and $O P_{n, k}(\sigma)$ be set of ordered partitions in $O P_{n, k}$ that avoid a pattern σ. For any permutation pattern σ of length 3, Godbole, Goyt, Herdan and Pudwell obtained formulas for the number of ordered partitions of $[n]$ with 3 blocks avoiding σ as well as the number of ordered partitions of $[n]$ with $n-1$ blocks avoiding σ. They showed that $\left|O P_{n, k}(\sigma)\right|=\left|O P_{n, k}(123)\right|$ for any permutation σ of length 3 . Moreover, they raised a question concerning the enumeration of $O P_{n, k}(123)$, and conjectured that the number of ordered partitions of [2n] with blocks of size 2 avoiding σ satisfied a second order linear recurrence relation. In answer to the question of Godbole, et al., we establish a connection between $\left|O P_{n, k}(123)\right|$ and the number $e_{n, d}$ of 123 -avoiding permutations of $[n]$ with d descents. Using the bivariate generating function of $e_{n, d}$ given by Barnabei, Bonetti and Silimbani, we obtain the bivariate generating function of $\left|O P_{n, k}(123)\right|$. Meanwhile, we confirm the conjecture of Godbole, et al. by deriving the generating function for the number of 123 -avoiding ordered partitions of [2n] with n blocks of size 2 .

AMS Classification: 05A15, 05A18
Keywords: pattern avoidance, ordered partition, descent
Download: PDF

Returf

