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The story so far (how to write a grant proposal)

The study of integrable (exactly solved) models is poised to enter a new
golden era. There are compelling reasons for this view:

◮ The theory is now mature. It has continued to make a huge impact on
mathematics and is now expected to be equally important in the
experimental study of new states of matter.

◮ Superior exact results apply where other approaches break down.
◮ It is now commonplace for experimentalists to manufacture

low-dimensional quantum structures – where quantum effects can be
most pronounced.

◮ Key integrable models – like the Lai & Yang interacting mixed
boson/fermion model – have gone largely unnoticed for over 30 years.

◮ New integrable models are beginning to appear for Bose-Einstein
condensates and metallic nanograins.



Lasers and magnets as cooling devices



Series of Holy Grails in ultra-cold matter research

◮ 1a) Bosonic condensates (1995)
– Cornell, Weiman & Ketterle

1b) Realization of an interacting 1D Bose gas through to the
strongly interacting Tonks-Girardeau regime (2004)

◮ 2a) Fermionic condensates (2004)
2b) Realization of an interacting 1D Fermi gas (200?)



Talk outline (everything old is new again!)

◮ 1) Integrable Bose gas

◮ 2) Integrable Fermi gas

◮ 3) Integrable mixed Bose-Fermi gas

◮ 4) Evidence for a quasi-stable attractive Bose gas



The 1D integrable Bose gas

◮ Lieb & Liniger (1963)
◮ McGuire (1964)

N interacting bosons on a line of length L (~ = 2m = 1)

H = −
N

∑

i=1

∂2

∂x2
i

+ 2 c
∑

1≤i<j≤N

δ(xi − xj)

kinetic term interaction term

◮ c > 0 repulsive interactions
◮ c < 0 attractive interactions

⇒ variable interaction strength c



The exact solution

Bethe Ansatz wavefunction

ψ(x1, . . . , xN) =
∑

p

A(p) exp(i
N

∑

j=1

kpj xj)

Energy eigenvalues

E =

N
∑

j=1

k2
j

Bethe equations

exp(ikjL) = −
N

∏

ℓ=1

kj − kℓ + i c
kj − kℓ − i c

for j = 1, . . . ,N



γ = Lc/N



The 1D integrable Fermi gas

◮ Gaudin (1967)
◮ Yang (1967)

N interacting two-component fermions on a line of length L
(~ = 2m = 1)
M spin-down fermions (special case M = N/2)

H = −
N

∑

i=1

∂2

∂x2
i

+ c
∑

1≤i<j≤N

δ(xi − xj)

◮ c > 0 repulsive interactions
◮ c < 0 attractive interactions



The exact solution

Energy eigenvalues

E =
N

∑

j=1

k2
j

Bethe equations

exp(ikjL) =
M
∏

ℓ=1

kj − Λℓ + 1
2 i c

kj − Λℓ − 1
2 i c

N
∏

ℓ=1

Λα − kℓ + 1
2 i c

Λα − kℓ − 1
2 i c

= −
M
∏

β=1

Λα − Λβ + i c
Λα − Λβ − i c

for j = 1, . . . ,N and α = 1, . . . ,M.



Weak interaction

For small |c|, distinguish between unpaired roots, k (u)
j , and

paired roots, k (p)
j .

Can expand the Bethe equations to O(c) to obtain

k (u)
j = π(M − N − 1 + 2j)/L + δ

(u)
j , j = 1, . . . ,N/2 − M,

k (u)
j = π(3M −N − 1 + 2j)/L + δ

(u)
j , j = N/2−M + 1, . . . ,N − 2M,

and k (p)
j = π [1 − M + 2j+] + δ

(p)
j+ ±

√

c/L,

where j+ = j , if j odd and j+ = j − 1 if j even.



Deviations (BCS-like eqns)

The deviations δ from k (u,p)
j are linear in c, with

δ
(u)
j =

c
L

∑

ℓ

1

k (u)
j ,0 − k (p)

ℓ,0

,

δ
(p)
j =

c
L





∑

ℓ 6=j

1

k (p)
j ,0 − k (p)

ℓ,0

+
1
2

∑

ℓ

1

k (p)
j ,0 − k (p)

ℓ,0



 .

Here k (u,p)
j ,0 are the quasimomenta of non-interacting particles as

given above. Note that the unpaired momenta do not interact
with each other, which is consistent with the Pauli principle.



Momentum distribution

From the above, one can derive the momentum distribution fns:

nu(k) =
1

2π
+

c
2π2

A
k2 − A2

, A < |k | < B,

np(k) =
1
π
− c

2π2

(

A
A2 − k2

+
B

B2 − k2

)

, |k | < A,

with A = πM/L and B = πN/L. Especially, for M = N/2, nu ≡ 0.

Note the power-law divergence near the cutoffs – an intrinsic property of
Luttinger liquids.
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Fermion momentum distribution – repulsive regime (N = 50 and M = 16)
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Ground state energy

◮ Define the polarization a = 2M/N.
a = 1 (zero polarized) a = 0 (fully polarized).

◮ The above asymptotic Bethe roots give

E
N

≈ ~
2n2

2m

[

a2

2
γ + γ(1 − a)a +

π2

12
a3 +

π2

3
a0

]

where γ = Lc/N and a0 = (1 − a)
(

(1 − 1
2a)2 + 1

2a
)

.
◮ The first two terms represent the binding and the interaction

energy, respectively. Both are linear in γ. This is different
from what is obtained in the TL from the Gaudin-Yang
integral equations, where the binding energy is ∝ γ2.

◮ The other terms are the kinetic energies for paired and
unpaired fermions.



Strong coupling – attractive

◮ For Lc ≪ −1, tightly bound states with quasi-momentum
k (p)

i ≈ Λi ± 1
2 ic separate from unbound states with

k (u)
j =

njπ

L

(

1 + 4M
Lc

)−1
with integers

nj = ±M,±(M + 2), . . . ,±(N − M − 2).

In the above, Λi = niπ
L

(

1 + M
Lc + 2(N−2M)

Lc

)−1

for ni = ±1, . . . ,±1
2(M − 1).

◮ Thus in the strongly attractive limit, a gap appears between
the bound paired and the unpaired momenta.

◮ In this scenario the bound states behave like hard-core
bosons while the unpaired fermions interact weakly with the
bound states.



Ground state energy

◮ Using the asymptotic expressions for the Bethe roots given
above in the strongly attractive regime, one obtains

E
N

≈ ~
2n2

2m

[

−a
4
γ2 +

π2

3

(

a3

16 b2
1

+
a1

b2
2

)]

where a1 = (1 − a)(1 − 1
2a(1 − 1

2a)),
b1 = 1 + a/(2γ) + 2(1 − a)/γ and b2 = 1 + 2a/γ.

◮ Whereas the first term represents the binding energy, the
remaining interaction energies stem from the interaction
between pair-pair and pair-unpaired fermions.

◮ The ground state energy is lowest for a = 1, compared to the
others for 0 ≤ a < 1.



Ground state energy – strong repulsive regime

Straightforward analysis of the Gaudin-Yang integral equations
leads to

E
N

≈







~
2n2

2m
π3

3

(

1 − 4a
γ

)

+ O(1/γ2, a2/γ), a ≪ 1
~

2n2

2m
π3

3

(

1 − 4 ln 2
γ

)

+ O(1/γ2), a = 1



Energy as a fn of interaction strength and polarization

◮ Use Gaudin-Yang integral eqns to compute E/N as a fn of γ
and a.

◮ Dashed lines are the analytic approximations.
◮ Curves shown are for a = 0, 0.2, 0.4, 0.6, 0.8, 1

(top to bottom).
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Spin and charge velocities
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Mixtures

◮ Fermi condensates achieved by sympathetic cooling with
bosons.



Wise words from the prophet!

◮ If you want to find a new solvable model – go to the library...



The integrable 1D mixed Bose-Fermi gas

Lai & Yang (1971)

◮ cited only a handfull of times
◮ bosons and fermions have equal mass – not so bad

Nf = N↓ + N↑ interacting two-component fermions on a line of length L
(~ = 2m = 1)
Nb bosons

H = −
N

∑

i=1

∂2

∂x2
i

+ 2c
∑

i<j

δ(xi − xj)



The exact solution

E =
N

∑

j=1

p2
j

Bethe equations

ei pℓL =
∏

j

pℓ − Λj + 1
2 i c

pℓ − Λj − 1
2 i c

∏

ℓ

Λk − pℓ − 1
2 i c

Λk − pℓ + 1
2 i c

= −
∏

j ,m

Λk − Λj − ic
Λk − Λj + ic

Λk − Am + 1
2 i c

Λk − Am − 1
2 i c

1 =
∏

j

An − Λj − 1
2 i c

An − Λj + 1
2 i c

,

where j , k = 1, . . . ,Nb + N↑, ℓ = 1, . . . ,N, m, n = 1, . . . ,Nb.



Momentum distribution

ρu(k) =
1

2π
+

c
2π2

(

A
k2 − A2

+
B
k2

)

, A < |k | < C

ρp(k) =
1
π
− c

2π2

(

A
A2 − k2

+
C

C2 − k2
− 2B

k2

)

,

2

√

cB
π

< |k | < C

ρb(k) =
1

2πc

(

4cB/π − k2
)1/2

, |k | < 2

√

cB
π
,

where A = πN↑/L, B = πNb/L, C = π(N↓ − N↑)/L
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The Tonks-Girardeau gas



The super Tonks-Girardeau gas

A stable gas-like state in the strongly interacting 1D Bose gas in
the attractive regime proposed by Astrakharchik et al.
cond-mat/0405225

Using variational Monte Carlo calculations, for a certain range of
strong coupling, the energy coincides with the energy

E
N

=
π2

~
2n2

6m

(

1 +
2n
c

)2

of a gas of hard rods.

But what about the integrable model?



The weakly attractive regime

Table: N = 12 with c = −0.005 and L = 6

j P Eexact EBCS Ecloud Enum.

0 0 −0.11028 −0.11000 −0.10000 −0.11021
1 π/3 0.96786 0.96809 0.96829 0.96794
2 0 2.04772 2.04791 2.04825 2.04782
3 2π/3 2.04936 2.04955 2.04991 2.04946
4 π/3 3.13094 3.13109 3.13153 3.13433
5 π 3.13422 3.13438 3.13487 3.13432
6 0 4.21587 4.21599 4.21649 4.21599
7 2π/3 4.21751 4.21764 4.21816 4.21763
8 4π/3 4.22244 4.22260 4.22316 4.22256
9 2π/3 4.25788 4.25810 4.25816 4.25797



The strongly attractive regime

Take N = 2M bosons with Lc ≪ −1 and even M.

The Bethe roots for the ground state are

k±j ≈ ±i
(

c
2(2M − 2j + 1) + δj

)

, j = 1, . . . ,M,

δj is small and negligible for Lc ≪ −1.

The wave function is

ψ(x1, . . . , xN) ≈ N exp







c
2

∑

1≤i<j≤N

|xj − xi |







Here N =

√
(n−1)!√

2π
|c| (n−1)

2 .

The energy eigenvalue is E0 = − 1
12 c2N(N2 − 1),

originally obtained by McGuire.



The super attractive state

There is a highly-excited state in which all Bethe roots are real and symmetric
about the origin, with ±k2m−1, m = 1, . . . ,N/2,

where kℓ ≈ πℓ
L

(

1 + 2
γ

)−1
.

The energy of this state follows as

E
N

≈ ~
2

2m
1
3

(N2 − 1)
π2

L2

(

1 +
2n
c

)−2

which coincides with the result for the gas of hard-rods!

Here the condition 2N
L|c| ≪ 1 is required.

⇒ Inherits hard-core behaviour from the large Fermi-pressure-like kinetic
energy from the strongly repulsive interaction.

⇒ Could potentially be reached in experiments.



The analysis of ultracold quantum gases

◮ The 1D interacting Bose gas in a hard wall box
MTB, X.W. Guan, N. Oelkers and C. Lee, arXiv:cond-mat/0505550

◮ Exact results for the 1D interacting Fermi gas with arbitrary polarization
MTB, M. Bortz, X.W. Guan and N. Oelkers, arXiv:cond-mat/0506264

◮ Exact results for the 1D mixed Bose-Fermi interacting gas
MTB, M. Bortz, X.W. Guan and N. Oelkers, arXiv:cond-mat/0506478

◮ Evidence for the super Tonks-Girardeau gas
MTB, M. Bortz, X.W. Guan and N. Oelkers, arXiv:cond-mat/0508009

⇒ See the talk by Xiwen Guan, Thursday afternoon, for the application of
integrable models to the physics of spin chains and ladders.




