Standing waves with critical frequency for nonlinear Schrödinger equations

!!!!!!! Happy Paul’s 70th Birthday !!!!!!!
International Conference on Variational Methods(ICVAM-2)

Chern Institute of Mathematics, China

May 18-22, 2009

Jaeyoung Byeon
POSTECH, Korea

We consider the following equation
(1) $\quad \varepsilon^{2} \Delta u-V(x) u+f(u)=0, \quad u>0 \quad$ on $\quad \mathbf{R}^{n}$ with $\lim _{|x| \rightarrow \infty} u(x)=0$ and sufficiently small $\varepsilon>0$.

$$
V \in C\left(\mathbf{R}^{n}\right), \quad f \in C(\mathbf{R}), \quad V \geq 0
$$

Nonlinear Schrödinger equation

$$
i \hbar \frac{\partial \psi}{\partial t}+\frac{\hbar^{2}}{2} \Delta \psi-V(x) \psi+f(\psi)=0,(t, x) \in \mathbf{R} \times \mathbf{R}^{n}
$$

Standing wave

$$
\psi(x, t)=\exp \left(-\frac{i E t}{\hbar}\right) u(x), u(x) \in \mathbb{R}
$$

Corresponding equation for u when $f\left(e^{i \theta} t\right)=e^{i \theta} f(t)$

$$
\frac{\hbar^{2}}{2} \Delta u-(V(x)-E) u+f(u)=0 \quad \text { in } \quad \mathbf{R}^{n}
$$

Semiclassical states

$$
\begin{gathered}
\varepsilon^{2} \Delta u-(V(x)-E) u+f(u)=0 \quad \text { in } \quad \mathbf{R}^{n} \\
\varepsilon^{2} \equiv \hbar^{2} / 2 \rightarrow 0
\end{gathered}
$$

Normalization $u(x) \rightarrow u(\varepsilon x)$

$$
\Downarrow
$$

$\Delta u-(V(\varepsilon x)-E) u+f(u)=0, u>0$ on \mathbf{R}^{n} with $\lim _{|x| \rightarrow \infty} u(x)=0$

For each $d>0$,

$$
V(\varepsilon x)-E \rightarrow V\left(x_{0}\right)-E
$$

uniformly on $B\left(\frac{x_{0}}{\varepsilon}, d\right)$ as $\varepsilon \rightarrow 0$.
If u_{ε} is a solution satisfying $\frac{1}{C} \leq\left\|u_{\varepsilon}\right\|_{C^{1, \alpha}\left(B\left(\frac{x_{0}}{\varepsilon}, d\right)\right)} \leq C$ for each $d>0$,

$$
\begin{aligned}
u_{\varepsilon}\left(\cdot+x_{0} / \varepsilon\right) & \rightarrow u \text { in } C_{l o c}^{1} \text { and } \\
\Delta u & -\left(V\left(x_{0}\right)-E\right) u+f(u)=0, u>0
\end{aligned}
$$

Almost optimal existence result by Berestycki-Lions.
Some criticality of $V+$ some conditions on f
(stronger than or equal to Berestycki-Lions conditions on f) \Downarrow

Existence of solution concentrating around critical points of V.

Liapunov-Schmidt reduction method

Pioneering work and development by
Floer-Weinstein, Yonggeun Oh, Ambrosetti, Vieri Benci, B., Yanyan Li, Zhaoli Liu, Juncheng Wei, Oshita,

Variational approach

Pioneering work and development by
Paul H. Rabinowitz, Patricio Felmer, del Pino, Gui, B. Zhi-Qiang Wang, Kazunaga Tanaka, Jeanjean, Oshita, ...

Typical nonlinearity $f(u)=u^{p}, 1<p<\frac{n+2}{n-2}$
No solutions for small $\varepsilon>0$ if $\inf _{x \in \mathbf{R}^{n}} V(x)-E<0$
No solutions for limiting problem if $V\left(x_{0}\right)-E=0$ [Gidas-Spruck]
A unique(up to a translation) solution U of limiting problem for $V\left(x_{0}\right)-E>0$

If $V\left(x_{0}\right)-E=0$, no solution u_{ε} for small $\varepsilon>0$ such that $\frac{1}{C} \leq\left\|u_{\varepsilon}\right\|_{C^{1, \alpha}\left(B\left(\frac{x_{0}}{\varepsilon}, d\right)\right)} \leq C$
(We change $V(x)-E \rightarrow V$ for simplicity)
If $V(x) \geq V\left(x_{0}\right)=0$, the functional

$$
\Gamma_{\varepsilon}(u)=\frac{1}{2} \int_{\mathbf{R}^{n}}|\nabla u|^{2}+V(\varepsilon x) u^{2} d x-\frac{1}{p+1} \int_{\mathbf{R}^{n}} u^{p+1} d x
$$

has a (local) mountain pass structure.

Indeed, for each isolated zero set $A \subset \mathbf{R}^{n}$ and $\delta>0$, there exists a local mountain pass solution u_{ε} such that $\lim _{\varepsilon \rightarrow \infty}\left\|u_{\varepsilon}\right\|_{L^{\infty}}=0, \liminf _{\varepsilon \rightarrow \infty} \varepsilon^{-\frac{2}{p+1}}\left\|u_{\varepsilon}\right\|_{L^{\infty}}>0$ and $u_{\varepsilon}(x) \leq$ $C \exp \left(-\frac{c}{\varepsilon} \operatorname{dist}\left(\varepsilon x, A^{\delta}\right)\right)$, where $A^{\delta}=\{x \mid \operatorname{dist}(x, A) \leq \delta\}$.
? Asymptotic profile of u_{ε} as $\varepsilon \rightarrow 0$

$$
\Delta u_{\varepsilon}-V(\varepsilon x) u_{\varepsilon}+\left(u_{\varepsilon}\right)^{p}=0
$$

Direct limit

$$
\Delta U+U^{p}=0, \quad U>0 \text { in } \mathbf{R}^{n}
$$

No solutions

$$
\Delta u_{\varepsilon}-V(\varepsilon x) u_{\varepsilon}+\left(u_{\varepsilon}\right)^{p}=0
$$

(renormalization, $w_{\varepsilon}(x) \equiv\left(\frac{a(\varepsilon)}{\varepsilon}\right)^{2 /(p-1)} u_{\varepsilon}\left(\frac{a(\varepsilon)}{\varepsilon} x\right)$)

$$
\Downarrow
$$

$$
\Delta w_{\varepsilon}-V(a(\varepsilon) x)\left(\frac{a(\varepsilon)}{\varepsilon}\right)^{2} w_{\varepsilon}+\left(w_{\varepsilon}\right)^{p}=0
$$

Take an appropriate $a(\varepsilon)$ so that $V(a(\varepsilon) x)\left(\frac{a(\varepsilon)}{\varepsilon}\right)^{2} \rightarrow V_{0}$ as $\varepsilon \rightarrow 0$ and there exists a solution of

$$
\Delta U-V_{0} U+U^{p}=0
$$

Expamples
Flat cases

$$
\begin{gathered}
V=0 \text { on } \bar{\Omega} \Rightarrow a(\varepsilon)=1 \\
\Delta U+U^{p}=0 \text { in } \Omega, U=0 \text { on } \partial \Omega
\end{gathered}
$$

Infinite cases

$$
\begin{gathered}
V(x) \approx \exp \left(-|x|^{-\alpha}\right) \text { near } 0 \Rightarrow a(\varepsilon)=\left(\log \varepsilon^{-2}\right)^{-1 / \alpha} \\
\Delta U+U^{p}=0 \text { in } B(0,1), \quad U=0 \text { on } \partial B(0,1)
\end{gathered}
$$

Finite cases

$$
\begin{gathered}
V(x) \approx|x|^{\alpha} \text { near } 0 \Rightarrow a(\varepsilon)=\varepsilon^{2 /(\alpha+2)} \\
\Delta U-|x|^{\alpha} U+U^{p}=0 \text { in } \mathbf{R}^{n}
\end{gathered}
$$

Very slow cases

$$
V(x) \approx(-\log |x|)^{-1} \text { near } 0 \Rightarrow a(\varepsilon)=g^{-1}\left(\varepsilon^{2}\right), g(x)=-x^{2} / \log x
$$

$$
\Delta U-U+U^{p}=0 \text { in } \mathbf{R}^{n}
$$

A rich variety of solutions following from a rich variety of decaying behavior of V near zeros

Algebraically small solutions whose interaction is exponentially small

$$
\Downarrow
$$

It should be possible to glue together the localized solutions [B. and Oshita, 2004] Yes for general critical points if $f(t)=$ $t^{p} \in C^{4}(\mathbb{R})$ and there exist limiting problems whose solutions are nondegenerate
(Lyapunov-Schmidt reduction method)
[Ding and Tanaka, 2003], [Cao and Noussair, 2004]
flat cased - variational method
[Cao and Peng,2006] exponentially (same order) decaying case - variational method
[Cao, Noussair and Yan, 2008]
different scales without the restriction $f(t)=t^{p} \in C^{4}(\mathbb{R})$

- Lyapunov-Schmidt reduction method
[Sato, 2007] different scales(no requiring the existence of limiting profile) for local minimum points of V and $f(t)=t^{p}$
- minimization on infinite dimensional torus

Aim

Develop a variational method and a hybrid method combining the variational method and reduction method to glue together localized solutions with different energy scales in a possibly general setting
(V1) $V \in C\left(\mathbb{R}^{n}\right) ; \liminf _{|x| \rightarrow \infty} V(x)>0=\min _{x \in \mathbb{R}^{n}} V(x)$;
(V2-1) there exist disjoint bounded open sets Ω_{i} with smooth boundary $\partial \Omega_{i}, i=1, \cdots, l$, satisfying $0=\inf _{x \in \Omega_{i}} V(x)<$ $\min _{x \in \partial \Omega_{i}} V(x)$;
(f1) $f \in C^{1}(\mathbb{R}), f(t)=0$ for $t \leq 0$ and there exist some $\mu>1$ and $C>0$ satisfying $|f(t)| \leq C t^{\mu}$ for $t \in(0,1)$;
(f2-1) there exists some $p \in\left(1, \frac{n+2}{n-2}\right)$ for $n \geq 3$ and $p \in$
$(1, \infty)$ for $n=1,2$ such that $\lim \inf _{t \rightarrow 0+} \frac{1}{t^{p+1}} \int_{0}^{t} f(s) d s>$ 0 ;
(f3) there exists $\mu_{2}>1$ such that $\left(\mu_{2}+1\right) \int_{0}^{t} f(s) d s \leq f(t) t$ for $t>0$.
[B. and Wang, 2003] Suppose that (V1),(V2-1),(f1), (f21), (f3) hold. Then, for sufficiently small $\varepsilon>0$, there exists a positive solution $u_{\varepsilon}^{i}, i=1, \cdots, l$ such that for any sufficiently small $d>0$, there exist $C, c>0$ satisfying

$$
u_{\varepsilon}^{i}(x) \leq C \exp \left(-\frac{c}{\varepsilon} \operatorname{dist}\left(x,\left(A_{i}\right)^{d}\right)\right)
$$

(Here $B^{d} \equiv\left\{x \in \mathbf{R}^{n} \mid \operatorname{dist}(x, B) \leq d\right\}$) satisfying

$$
\lim _{\varepsilon \rightarrow 0}\left\|u_{\varepsilon}\right\|_{L^{\infty}\left(\Omega_{i}\right)}=0, \quad \lim _{\varepsilon \rightarrow 0} \varepsilon^{-2 /(\mu-1)}\left\|u_{\varepsilon}\right\|_{L^{\infty}\left(\Omega_{i}\right)}>0
$$

[A related work of Sirakov]
[B. and Oshita] Suppose that (V1),(V2-1),(f1), (f2-1), (f3) hold. Then, for sufficiently small $\varepsilon>0$, there exists a positive solution u_{ε} such that
(i) for any sufficiently small $d>0$, there exist $C, c>0$ satisfying

$$
u_{\varepsilon}(x) \leq C \exp \left(-\frac{c}{\varepsilon} \operatorname{dist}\left(x,\left(A_{1} \cup \cdots \cup A_{l}\right)^{d}\right)\right)
$$

$\left(\right.$ Here $\left.A^{d} \equiv\left\{x \in \mathbf{R}^{n} \mid \operatorname{dist}(x, A) \leq d\right\}\right)$
(ii) for $i=1, \cdots, l$, it holds that

$$
\lim _{\varepsilon \rightarrow 0}\left\|u_{\varepsilon}\right\|_{L^{\infty}\left(\Omega_{i}\right)}=0, \quad \lim _{\varepsilon \rightarrow 0} \varepsilon^{-2 /(\mu-1)}\left\|u_{\varepsilon}\right\|_{L^{\infty}\left(\Omega_{i}\right)}>0
$$

(V2-2) there exist disjoint bounded open sets Ω_{i} with smooth boundary $\partial \Omega_{i}, i=1, \cdots, k$, satisfying

$$
m_{i}=\inf _{x \in \Omega_{i}} V(x)<\min _{x \in \partial \Omega_{i}} V(x)
$$

and

$$
0=m_{1}=\cdots=m_{l}<m_{l+1}, \cdots, m_{k}
$$

(f2-2) there exists some $p \in\left(1, \frac{n+2}{n-2}\right)$ for $n \geq 3$ and $p \in$
$(1, \infty)$ for $n=1,2$ such that $\lim \sup _{t \rightarrow \infty} \frac{|f(t)|+\left|f^{\prime}(t) t\right|}{t^{p}}<\infty$.
[B. and Oshita] Suppose that (V1) and (V2-2) hold, and that (f1), (f2-1), (f2-2), (f3-1) hold. Then, for sufficiently small $\varepsilon>0$, there exists a positive solution u_{ε} such that
(i) for any sufficiently small $d>0$, there exist $C, c>0$ satisfying

$$
u_{\varepsilon}(x) \leq C \exp \left(-c \operatorname{dist}\left(x,\left(A_{1} \cup \cdots \cup A_{k}\right)^{d}\right) / \varepsilon\right)
$$

(ii) for $i=1, \cdots, l$, it holds that

$$
\lim _{\varepsilon \rightarrow 0}\left\|u_{\varepsilon}\right\|_{L^{\infty}\left(\Omega_{i}\right)}=0, \quad \lim _{\varepsilon \rightarrow 0} \varepsilon^{-2 /(\mu-1)}\left\|u_{\varepsilon}\right\|_{L^{\infty}\left(\Omega_{i}\right)}>0
$$

and for $i=l+1, \cdots, k$, it holds that for a least energy solution U of $\Delta U-m_{i} U+f(U)=0$ and some $x_{\varepsilon}^{i} \in \Omega_{i}$ with $\lim _{\varepsilon \rightarrow 0} x_{\varepsilon}^{i}=x_{i}$, a transformed solution $u_{\varepsilon}\left(\varepsilon x+x_{\varepsilon}^{i}\right)$ converges (up to a subsequence) uniformly to $U(x)$ on each bounded set in \mathbb{R}^{n}.
(V3) there are $x_{1}, \cdots, x_{m} \in \mathbb{R}^{n}$ and disjoint bounded open sets $\Omega_{k+1}, \cdots, \Omega_{k+m}$ with smooth boundary $\partial \Omega_{k+j}$ such that $x_{j} \in \Omega_{k+j}, V \in C^{2}\left(\Omega_{k+j}\right), \nabla V(x) \neq 0$ for $x \in$ $\Omega_{k+j} \backslash\left\{x_{j}\right\}, \inf _{x \in \Omega_{k+j}} V(x)>0$ and x_{j} is a non-degenerate critical point of V for $j \in\{1, \cdots, m\}$;
(f4) for any $a \in\left\{V\left(x_{1}\right), \cdots, V\left(x_{m}\right)\right\}$, the problem

$$
\Delta u-a u+f(u)=0, \quad u>0 \quad \text { in } \mathbb{R}^{n}, \quad u \in H^{1,2}\left(\mathbb{R}^{n}\right)
$$

has a radially symmetric solution U_{a} which is non-degenerate in $H_{\mathrm{r}}^{1,2}\left(\mathbb{R}^{n}\right) \equiv\left\{w \in H^{1,2}\left(\mathbb{R}^{n}\right) ; w(x)=w(|x|)\right\}$, and $f \in C_{\mathrm{loc}}^{1, \gamma}(\mathbb{R})$ for some $\gamma \in(0,1)$.
[B. and Oshita] We assume that (V1), (V2-2) and (V3) hold. Suppose that (f1), (f2-1),(f2-2), (f3) and (f4) hold. Then for sufficiently small $\varepsilon>0$, there exists a positive solution u_{ε} such that
(i) for any sufficiently small $d>0$, there exist $C, c>0$ satisfying

$$
u_{\varepsilon}(x) \leq C \exp \left(-\frac{c}{\varepsilon} \operatorname{dist}\left(x,\left(A_{1} \cup \cdots \cup A_{k} \cup\left\{x_{1}, \cdots x_{m}\right\}\right)^{d}\right)\right)
$$

(ii) the same behavior around zero $A_{i}, i=1, \cdots, k$;
(iii) for each $i=1, \cdots, m$, there exist $y_{\varepsilon}^{i} \in \mathbb{R}^{n}$ such that $\lim _{\varepsilon \rightarrow 0} y_{\varepsilon}^{i}=x_{i}$ and that $u_{\varepsilon}\left(\varepsilon x+y_{\varepsilon}^{i}\right)$ converges uniformly (up to a subsequence) to $U_{V\left(x_{i}\right)}$ on each bounded set in \mathbb{R}^{n}. Here $U_{V\left(x_{i}\right)}$ is a function given in (f4).

Setting and preliminaries

$$
\mathcal{Z}:=\left\{x \in \mathbf{R}^{n} \mid V(x)=0\right\}, A_{0}:=\mathcal{Z} \backslash \cup_{i=1}^{k} A_{i} \text { and } \Omega_{0} \supset A_{0}
$$

a bounded open set with a smooth boundary such that for $\delta>0$ and $\Omega_{i}^{\delta}=\left\{x \in \mathbf{R}^{n} \mid \operatorname{dist}\left(x, \Omega_{i}\right) \leq \delta\right\}, \Omega_{i}^{2 \delta} \cap \Omega_{j}^{2 \delta}=\emptyset$ for each $0 \leq i \neq j \leq k+m$, and that $\partial \Omega_{i}^{\delta^{\prime}}$ is smooth for each $0 \leq i \leq k+m$ and $\delta^{\prime} \in[0,2 \delta]$.

For $\lambda \ll 1$, we define $g(x, t)$ so that $\left|g(x, t)-g\left(x, t^{\prime}\right)\right| \leq$ $\lambda\left|t-t^{\prime}\right|$ for $x \notin \cup_{i=0}^{k+m} \Omega_{i, \varepsilon}, g(x, t)=f(t)$ for small $t>0$ and some more properties.

$$
\begin{aligned}
& G(x, t) \equiv \int_{0}^{t} g(x, s) d s,\|u\|_{\varepsilon}^{2} \equiv \int_{\mathbb{R}^{n}}|\nabla u|^{2}+V_{\varepsilon}(x) u^{2} d x . \\
& \text { For } u \in H_{\varepsilon} \equiv \overline{\left(C_{0}^{\infty},\|\cdot\|_{\varepsilon}\right)}, \\
& \qquad \Gamma_{\varepsilon}(u) \equiv \frac{1}{2}\|u\|_{\varepsilon}^{2}-\int_{\mathbb{R}^{n}} G(x, u) d x, \quad \Gamma_{\varepsilon} \in C^{2}\left(H_{\varepsilon}\right)
\end{aligned}
$$

For $u_{i} \in H^{1}\left(\Omega_{i, \varepsilon}\right)$ (here $\left.\Omega_{i, \varepsilon}=\frac{1}{\varepsilon} \Omega_{i}\right)$, let

$$
X_{i}^{\varepsilon}\left(u_{i}\right)=\left\{u \in H_{0}^{1}\left(\Omega_{i, \varepsilon}^{\delta}\right) \mid u=u_{i} \text { on } \Omega_{i, \varepsilon}\right\} .
$$

Proposition 0.1. For each $u_{i} \in H^{1}\left(\Omega_{i, \varepsilon}\right), i \in\{0, \cdots, k+$ $m\}$, there exists a unique minimizer $P_{i}\left(u_{i}\right)$ of Γ_{ε} on $X_{i}^{\varepsilon}\left(u_{i}\right)$, which satisfies the following:
(i) $w=P_{i}\left(u_{i}\right) \in H_{0}^{1}\left(\Omega_{i, \varepsilon}^{\delta}\right)$ solves

$$
\begin{cases}\Delta w-V_{\varepsilon} w+f_{\lambda}(w)=0 & \text { in } \Omega_{i, \varepsilon}^{\delta} \backslash \Omega_{i, \varepsilon} \\ w=u_{i} & \text { on } \partial \Omega_{i, \varepsilon} \\ w=0 & \text { on } \partial \Omega_{i, \varepsilon}^{\delta},\end{cases}
$$

(ii) $P_{i}: H^{1}\left(\Omega_{i, \varepsilon}\right) \rightarrow H_{0}^{1}\left(\Omega_{i, \varepsilon}^{\delta}\right)$ is of class C^{1},
(iii) there exists a positive constant C, independent of small $\varepsilon>0$ such that

$$
\left\|P_{i}\left(u_{i}\right)\right\|_{\varepsilon} \leq C\left\|u_{i}\right\|_{\varepsilon, \Omega_{i, \varepsilon}} \text { for all } u_{i} \in H^{1}\left(\Omega_{i, \varepsilon}\right), i \in\{0, \cdots, k+m\} .
$$

For $\vec{u}=\left(u_{0}, \cdots, u_{k+m}\right), u_{i} \in H^{1}\left(\Omega_{i, \varepsilon}\right)$, let

$$
X_{*}^{\varepsilon}(\vec{u})=\left\{u \in H_{\varepsilon} \mid u=u_{i} \text { on } \Omega_{i, \varepsilon}, i=0, \cdots, k+m\right\} .
$$

Proposition 0.2. For each $\vec{u}=\left(u_{0}, \cdots, u_{k+m}\right) \in H^{1}\left(\Omega_{0, \varepsilon}\right) \times$ $\cdots \times H^{1}\left(\Omega_{k+m, \varepsilon}\right)$, there exists a unique minimizer $\varphi(\vec{u})$ of Γ_{ε} on $X_{*}^{\varepsilon}(\vec{u})$, which satisfies the following:
(i) $w=\varphi(\vec{u})$ solves

$$
\begin{cases}\Delta w-V_{\varepsilon} w+f_{\lambda}(w)=0 & \text { in }\left(\Omega_{0, \varepsilon} \cup \cdots \cup \Omega_{k, \varepsilon}\right)^{c} \\ w=u_{i} & \text { on } \partial \Omega_{i, \varepsilon}(i=0, \cdots, k),\end{cases}
$$

(ii) $\varphi: H^{1}\left(\Omega_{0, \varepsilon}\right) \times \cdots \times H^{1}\left(\Omega_{k, \varepsilon}\right) \rightarrow H_{\varepsilon}$ is of class C^{1},
(iii) there exists a positive constant C, independent of small $\varepsilon>0$ such that

$$
\|\varphi(\vec{u})\|_{\varepsilon} \leq C\|\vec{u}\|_{\varepsilon}
$$

Let $\tilde{\varphi}(\vec{u})=\varphi(\vec{u})-\sum_{i=0}^{k+m} P_{i}\left(u_{i}\right)$. Then it follows that $\tilde{\varphi}(\vec{u}) \in X_{*}^{\varepsilon}(\overrightarrow{0})$. Now we obtain the following estimates for $\tilde{\varphi}(\vec{u})$.

Proposition 0.3. For any $R>0$ and $\varepsilon_{0}>0$, there exist constants $C, c>0$ such that

$$
\|\tilde{\varphi}(\vec{u})\|_{\varepsilon} \leq C e^{-c / \varepsilon}
$$

for $\varepsilon \in\left(0, \varepsilon_{0}\right)$ and $\|\vec{u}\|_{\varepsilon} \leq R$.
Let $I_{\varepsilon}(\vec{u})=\Gamma_{\varepsilon}(\varphi(\vec{u}))$. Then from Proposition 0.3, we conclude that for any $R, \varepsilon_{0}>0$, there exist constants $C, c>$ 0 such that

$$
\left|I_{\varepsilon}(\vec{u})-\sum_{i=0}^{k+m} \Gamma_{\varepsilon}\left(P_{i}\left(u_{i}\right)\right)\right| \leq C e^{-c / \varepsilon}
$$

for $\|\vec{u}\|_{\varepsilon} \leq R$ and $\varepsilon \in\left(0, \varepsilon_{0}\right)$.

Proposition 0.4. The following hold.
(i) A vector function $\vec{u}=\left(u_{0}, \cdots, u_{k+m}\right) \in H^{1}\left(\Omega_{0, \varepsilon}\right) \times \cdots \times$ $H^{1}\left(\Omega_{k+m, \varepsilon}\right)$ is a critical point of I_{ε} if and only if $\varphi(\vec{u})$ is a critical point of Γ_{ε}.
(ii) The functional $\vec{u} \mapsto I_{\varepsilon}(\vec{u})$ satisfies (PS) condition if Γ_{ε} does.
(iii) For any $R>0, i=0, \cdots, k+m$ and $\varepsilon_{0}>0$, there exist constants $C, c>0$ such that

$$
\begin{aligned}
& \left|\frac{\partial I_{\varepsilon}}{\partial u_{i}}\left(u_{0}, \cdots, u_{k+m}\right)-\frac{d \Gamma_{\varepsilon}\left(P_{i}\left(u_{i}\right)\right)}{d u_{i}}\right| \leq C e^{-c / \varepsilon} \text { for } \varepsilon \in\left(0, \varepsilon_{0}\right) \\
& \text { and }\|\vec{u}\|_{\varepsilon} \leq R .
\end{aligned}
$$

We define $\Gamma_{\varepsilon}^{j}(u)=\Gamma_{\varepsilon}\left(P_{j}(u)\right)$ for $u \in H^{1}\left(\Omega_{j, \varepsilon}\right)$ and $j \in$ $\{1, \cdots, k+m\}$.
Proposition 0.5. For each $j \in\{1, \cdots, k+m\}$, the following hold.
(i) A function u_{j} is a critical point of Γ_{ε}^{j} if and only if $P_{j}\left(u_{j}\right) \in H_{0}^{1}\left(\Omega_{j, \varepsilon}^{\delta}\right)$ is a critical point of Γ_{ε} on $H_{0}^{1}\left(\Omega_{j, \varepsilon}^{\delta}\right)$.
(ii) The functional Γ_{ε}^{j} on $H^{1}\left(\Omega_{j, \varepsilon}\right)$ satisfies $(P S)$ condition if Γ_{ε} on $H_{0}^{1}\left(\Omega_{j, \varepsilon}^{\delta}\right)$ does.

Let $\alpha=2 \frac{\mu+1}{\mu-1}$. By Proposition 0.1 (iii), we can choose a constant $M>1$, independent of small $\varepsilon>0$, such that

$$
\left\|u_{i}\right\|_{\varepsilon, \Omega_{i, \varepsilon}} \leq\left\|P_{i}\left(u_{i}\right)\right\|_{\varepsilon} \leq M\left\|u_{i}\right\|_{\varepsilon, \Omega_{i, \varepsilon}} \text { for all } u_{i} \in H^{1}\left(\Omega_{i, \varepsilon}\right)
$$

and $i \in\{0, \cdots, k+m\}$.
Proposition 0.6. Let $i \in\{0, \cdots, l\}$. For sufficiently small $\varepsilon>0$, it holds that $\Gamma_{\varepsilon}(u) \geq 6 M^{2} \varepsilon^{2 \alpha}$ for all $u \in H_{0}^{1}\left(\Omega_{i, \varepsilon}^{\delta}\right)$ with $\|u\|_{\varepsilon}=4 M \varepsilon^{\alpha}$.

Proposition 0.7. Let $i \in\{0, \cdots, l\}$. For sufficiently small $\varepsilon>0$, it holds that $\left|\Gamma_{\varepsilon}(u)\right| \leq 5 M^{2} \varepsilon^{2 \alpha}$ for all $u \in H_{0}^{1}\left(\Omega_{i, \varepsilon}^{\delta}\right)$ with $\|u\|_{\varepsilon} \leq 3 M \varepsilon^{\alpha}$, and $\Gamma_{\varepsilon}(u) \geq 0$ for all $u \in H_{0}^{1}\left(\Omega_{i, \varepsilon}^{\delta}\right)$ with $\|u\|_{\varepsilon} \leq 5 M \varepsilon^{\alpha}$.

Note that we take $\alpha=2 \frac{\mu+1}{\mu-1}$.
Proposition 0.8. For sufficiently small $\varepsilon>0$,

$$
\begin{gathered}
\left\|I_{\varepsilon}^{\prime}(\vec{u})\right\| \geq \frac{1}{2} \varepsilon^{\alpha} \\
\text { if } 2 \varepsilon^{\alpha} \leq\left\|P_{i}\left(u_{i}\right)\right\|_{\varepsilon} \leq 3 M \varepsilon^{\alpha} \text { for some } i \in\{0, \cdots, k\} .
\end{gathered}
$$

Proposition 0.9. Let $E>0$ be a given constant. Then for sufficiently large $R_{1}>0$, there exists a constant ε_{0} such that if $\left.I_{\varepsilon}(\vec{u}) \leq E, \varepsilon \in\left(0, \varepsilon_{0}\right), \frac{R_{1}}{4 M} \leq \| P_{i}\left(u_{i}\right)\right) \|_{\varepsilon} \leq R_{1}$ for some $i=1, \cdots, k$, then $\left\|I_{\varepsilon}^{\prime}(\vec{u})\right\| \geq 1$.

Scheme of the Proof for $m_{1}=\cdots=m_{k}=0$.
Let $G_{\varepsilon}^{i}=\left\{\gamma \in C\left([0,1], H_{0}^{1}\left(\Omega_{i, \varepsilon}^{\delta}\right)\right) \mid \gamma(0)=0, \gamma(1)=h_{i}\right\}$, $\Gamma_{\varepsilon}\left(h_{i}\right)<0$, and

$$
c_{\varepsilon}^{i}:=\inf _{\gamma \in G_{\varepsilon}^{i}} \max _{t[0,1]} \Gamma_{\varepsilon}\left(P_{i}(\gamma(t))\right) \geq 6 M^{2} \varepsilon^{2 \alpha}, i \in\{1, \cdots, k\}
$$

We find a good path $\gamma_{i} \in C\left([0,1], H_{0}^{1}\left(\Omega_{i, \varepsilon}^{\delta}\right)\right.$ so that

$$
\max _{t \in[0,1]} \Gamma\left(\gamma_{i}(t)\right) \leq c_{\varepsilon}^{i}+\exp \left(-\frac{1}{\varepsilon}\right) .
$$

Now we define $\vec{\gamma}(s)=\left(0, \gamma_{\varepsilon}^{1}\left(s_{1}\right), \cdots, \gamma_{\varepsilon}^{k}\left(s_{k}\right)\right)$ with $s=$ $\left(s_{1}, \cdots, s_{k}\right) \in[0,1]^{k}$. We define

$$
d_{\varepsilon}:=\max _{s \in[0,1]^{k}} I_{\varepsilon}(\vec{\gamma}(s)) .
$$

Then $d_{\varepsilon}=c_{\varepsilon}^{1}+\cdots+c_{\varepsilon}^{k}+O\left(e^{-c / \varepsilon}\right)$ for some $c>0$.

Proposition 0.10. For sufficiently small $\varepsilon>0$, there exists a critical point $u_{\varepsilon} \in H_{\varepsilon}$ of Γ_{ε} such that $u_{\varepsilon} \in\left(\Gamma_{\varepsilon}^{d_{\varepsilon}} \backslash \Gamma_{\varepsilon}^{d_{\varepsilon}-\varepsilon^{2 \alpha}}\right)$ $u_{\varepsilon} \in\left\{\left\|P_{0}(u)\right\|_{\varepsilon} \leq 5 M \varepsilon^{\alpha}, \varepsilon^{\alpha} \leq\left\|P_{i}(u)\right\|_{\varepsilon} \leq 2 R, i=1, \cdots, k\right\}$.

PROOF

If not, through by the gradient flow, we can find paths

$$
\overrightarrow{\gamma_{*}}=\left(\gamma_{*}^{0}, \cdots, \gamma_{*}^{k}\right) \in C\left([0,1]^{k}, \prod_{i=0}^{k} H_{0}^{1}\left(\Omega_{i, \varepsilon}\right)\right)
$$

such that

$$
I\left(\overrightarrow{\gamma_{*}}\right) \leq d_{\varepsilon}-\varepsilon^{2 \alpha} / 2 .
$$

On the other hand,

$$
\begin{gathered}
I\left(\overrightarrow{\gamma_{*}}\right) \geq \sum_{i=1}^{k} \Gamma\left(P_{i}\left(\gamma_{*}^{i}\right)\right)+O\left(\exp \left(-\frac{c}{\varepsilon}\right)\right) \geq c_{\varepsilon}^{1}+\cdots+c_{\varepsilon}^{k}+O\left(\exp \left(-\frac{c}{\varepsilon}\right)\right. \\
=d_{\varepsilon}+O\left(\exp \left(-\frac{c}{\varepsilon}\right) ; \quad\right. \text { contradiction }
\end{gathered}
$$

Scheme of the Proof for the last gluing result

Simple case. $x_{1}=0$ and $\Omega_{k+1}=B_{\sigma}(0) . \quad\left(\mathbf{u}, u_{k+1}\right) \in$ $H^{1}\left(\Omega_{0, \varepsilon}\right) \times \cdots \times H^{1}\left(\Omega_{k+1, \varepsilon}\right), \mathbf{u}=\left(u_{0}, \cdots, u_{k}\right) \in H^{1}\left(\Omega_{0, \varepsilon}\right) \times$ $\cdots \times H^{1}\left(\Omega_{k, \varepsilon}\right)$. We write $\Omega_{\varepsilon}=\Omega_{k+1, \varepsilon}, P=P_{k+1}$. For a given \mathbf{u}, we define $Q_{\varepsilon}\left(u_{k+1}\right)=I_{\varepsilon}\left(\mathbf{u}, u_{k+1}\right), \psi\left(u_{k+1}\right)=\varphi\left(\mathbf{u}, u_{k+1}\right)$, $K_{\varepsilon}\left(u_{k+1}\right)=\Gamma_{\varepsilon}\left(P\left(u_{k+1}\right)\right)$.

The first step: we find a solution Ψ_{ε} of the localized problem $K_{\varepsilon}^{\prime}(u)=0$.

The second step: we find a solution $u_{k+1}=\Phi_{\varepsilon}(\mathbf{u})$ of $Q_{\varepsilon}^{\prime}\left(u_{k+1}\right)=0$ in an exponentially small neighborhood of the solution Ψ_{ε} to the localized problem.

The third step: to find a critical point of $I_{\varepsilon}\left(\mathbf{u}, \Phi_{\varepsilon}(\mathbf{u})\right)$, we consider the following functional

$$
\bar{I}_{\varepsilon}(\mathbf{u}) \equiv I_{\varepsilon}\left(\mathbf{u}, \Phi_{\varepsilon}(\mathbf{u})\right)-K_{\varepsilon}\left(\Psi_{\varepsilon}\right) .
$$

The last step : we apply the variational method as before to find a critical point of \bar{I}_{ε}.

What happen when V vanishes at infinity

$$
\varepsilon^{2} \Delta u-V u+u^{p}=0, \quad u>0, \quad \text { in } \mathbf{R}^{n}
$$

[Ambrosetti-Felli-Malchiodi, Ambrosetti-Malchiodi-Ruiz, B.Wang] If liminf $\operatorname{lx|\rightarrow \infty } V(x)|x|^{2}>0$, we can construct standing waves with finite energy.

If V has compact support, for $p \in(1, n /(n-2)]$, there exists no positive solution for

$$
\varepsilon^{2} \Delta u-V u+u^{p}=0, \quad u>0, \quad \text { in } \mathbf{R}^{n}
$$

[Chang-Yin, Moroz-Van Schaftingen] No decay restriction on $V \geq 0$ when $p \in(n /(n-2),(n+2) /(n-2)), n \geq 3$

What is an optimal threshold of decay rate of V for existence and nonexistence

[Ambrosetti and Malchiodi, 2007, Concentration phenomena for NLS: recent results and new perspectives, Contem. Math.]
[Bae-B.] Suppose that

$$
\lim _{|x| \rightarrow \infty} V(x)|x|^{2}=0
$$

for $1<p<n /(n-2)$ if $n \geq 3$ and $p>1$ if $n=1,2$, and that $\lim _{|x| \rightarrow \infty} V(x)|x|^{2} \ln |x|=0$ for $p=n /(n-2)$ and $n \geq 3$, then there exist no positive solutions for any small $\varepsilon>0$.

Moreover there exists a potential V satisfying $\lim _{|x| \rightarrow \infty} V(x)|x|^{2} \ln |x|>0$ such that for some small $\varepsilon>0$, there exists a solution of the problem

$$
\varepsilon^{2} \Delta u-V u+u^{n /(n-2)}=0, \quad u>0 \quad \text { in } \mathbf{R}^{n} \backslash B(0,1)
$$

A goal on the standing waves through by development of variational methods

Construct solutions under the Beresticki-Lions condition on nonlinearity and the optimal decay condition on V

