Nontrivial solutions for a a class of singular problems

Marcelo Montenegro Universidade Estadual de Campinas

> Elves A. B. Silva Universidade de Brasília

$$\begin{cases}
-\Delta u = \left(-u^{-\beta} + \lambda u^{p}\right) \chi_{\{u>0\}} & \text{in } \Omega \\
u = 0 & \text{on } \partial\Omega
\end{cases}$$
(1)

$$\begin{cases}
-\Delta u = \left(-u^{-\beta} + \lambda u^{p}\right) \chi_{\{u>0\}} & \text{in } \Omega \\
u = 0 & \text{on } \partial\Omega
\end{cases}$$
(1)

▶ Ω is a bounded smooth domain in \mathbb{R}^n , $n \ge 1$

$$\begin{cases}
-\Delta u = \left(-u^{-\beta} + \lambda u^{p}\right) \chi_{\{u>0\}} & \text{in } \Omega \\
u = 0 & \text{on } \partial\Omega
\end{cases}$$
(1)

- $ightharpoonup \Omega$ is a bounded smooth domain in $\mathbb{R}^n, \ n \geq 1$
- $0 < \beta < 1$, $0 , <math>\lambda > 0$

$$\begin{cases}
-\Delta u = \left(-u^{-\beta} + \lambda u^{p}\right) \chi_{\{u>0\}} & \text{in } \Omega \\
u = 0 & \text{on } \partial\Omega
\end{cases}$$
(1)

- ▶ Ω is a bounded smooth domain in \mathbb{R}^n , $n \ge 1$
- $0 < \beta < 1, \ 0 < p < 1, \ \lambda > 0$
- This problem has been studied in several articles: Choi- Lazer
 McKenna, Cîrstea Ghergu Radulescu, Dávila, Dávila Montenegro, Diaz Morel Oswald

$$\begin{cases}
-\Delta u = \left(-u^{-\beta} + \lambda u^{p}\right) \chi_{\{u>0\}} & \text{in } \Omega \\
u = 0 & \text{on } \partial\Omega
\end{cases}$$
(1)

- ▶ Ω is a bounded smooth domain in \mathbb{R}^n , $n \ge 1$
- ▶ $0 < \beta < 1$, $0 , <math>\lambda > 0$
- This problem has been studied in several articles: Choi- Lazer
 McKenna, Cîrstea Ghergu Radulescu, Dávila, Dávila Montenegro, Diaz Morel Oswald
- ▶ By a solution we mean a function $u \in H_0^1(\Omega)$ satisfying (1) in the weak sense, that is,

$$\begin{cases}
-\Delta u = \left(-u^{-\beta} + \lambda u^{p}\right) \chi_{\{u>0\}} & \text{in } \Omega \\
u = 0 & \text{on } \partial\Omega
\end{cases}$$
(1)

- ▶ Ω is a bounded smooth domain in \mathbb{R}^n , $n \ge 1$
- ▶ $0 < \beta < 1$, $0 , <math>\lambda > 0$
- This problem has been studied in several articles: Choi- Lazer
 McKenna, Cîrstea Ghergu Radulescu, Dávila, Dávila Montenegro, Diaz Morel Oswald
- ▶ By a solution we mean a function $u \in H_0^1(\Omega)$ satisfying (1) in the weak sense, that is,

$$\int_{\Omega} \nabla u \nabla \varphi = \int_{\{u > 0\}} \left(-\frac{1}{u^{\beta}} + \lambda u^{\rho} \right) \varphi$$

for every $\varphi \in C_c^1(\Omega)$.

► There are a few recent papers using variational methods for studying an equation with a positive singular nonlinearity on the right hand side ► There are a few recent papers using variational methods for studying an equation with a positive singular nonlinearity on the right hand side

$$-\Delta u = \frac{1}{u^{\beta}} + \lambda u^{\rho},$$

- ► There are a few recent papers using variational methods for studying an equation with a positive singular nonlinearity on the right hand side
 - $-\Delta u = \frac{1}{u^{\beta}} + \lambda u^{\rho},$
- ▶ Canino, Canino Degiovanni, Hirano Saccon Shioji, Perera
 —, Long Sun Wu, Gonçalves Santos

- ► There are a few recent papers using variational methods for studying an equation with a positive singular nonlinearity on the right hand side
 - $-\Delta u = \frac{1}{u^{\beta}} + \lambda u^{\rho},$
- Canino, Canino Degiovanni, Hirano Saccon Shioji, Perera
 —, Long Sun Wu, Gonçalves Santos
- Boccardo for related results

- ► There are a few recent papers using variational methods for studying an equation with a positive singular nonlinearity on the right hand side
 - $-\Delta u = \frac{1}{u^{\beta}} + \lambda u^{\rho},$
- Canino, Canino Degiovanni, Hirano Saccon Shioji, Perera
 —, Long Sun Wu, Gonçalves Santos
- Boccardo for related results
- Crandall Rabinowitz Tartar: the existence of one solution via bifurcation theory

- ► There are a few recent papers using variational methods for studying an equation with a positive singular nonlinearity on the right hand side
 - $-\Delta u = \frac{1}{u^{\beta}} + \lambda u^{\rho},$
- Canino, Canino Degiovanni, Hirano Saccon Shioji, Perera
 —, Long Sun Wu, Gonçalves Santos
- Boccardo for related results
- Crandall Rabinowitz Tartar: the existence of one solution via bifurcation theory

Existence of two solutions

Theorem 1

Problem (1) has two distinct nontrivial solutions for $\lambda > 0$ large.

Consider the perturbation

$$g_{\varepsilon}(t) = \begin{cases} \frac{t^q}{(t+\varepsilon)^{q+\beta}} & \text{for } t \ge 0 \\ 0 & \text{for } t < 0, \end{cases}$$
 (2)

Consider the perturbation

$$g_{\varepsilon}(t) = \begin{cases} \frac{t^q}{(t+\varepsilon)^{q+\beta}} & \text{for } t \ge 0 \\ 0 & \text{for } t < 0, \end{cases}$$
 (2)

where 0 < q < p < 1

Consider the perturbation

$$g_{\varepsilon}(t) = \left\{ egin{aligned} rac{t^q}{(t+arepsilon)^{q+eta}} & ext{for } t \geq 0 \ 0 & ext{for } t < 0, \end{aligned}
ight.$$

where 0 < q < p < 1 and the corresponding perturbed problem

$$\begin{cases}
-\Delta u + g_{\varepsilon}(u) = \lambda u^{p} & \text{in } \Omega \\
u = 0 & \text{on } \partial\Omega
\end{cases}$$
(3)

Consider the perturbation

$$g_{\varepsilon}(t) = \left\{ egin{array}{l} \displaystyle rac{t^q}{(t+arepsilon)^{q+eta}} ext{ for } t \geq 0 \ 0 ext{ for } t < 0, \end{array}
ight.$$

where 0 < q < p < 1 and the corresponding perturbed problem

$$\begin{cases}
-\Delta u + g_{\varepsilon}(u) = \lambda u^{p} & \text{in } \Omega \\
u = 0 & \text{on } \partial\Omega
\end{cases}$$
(3)

The associated functional $I_{\varepsilon} \in C^1(H^1_0(\Omega),\mathbb{R})$ is given by

Consider the perturbation

$$g_{\varepsilon}(t) = \left\{ egin{aligned} rac{t^q}{(t+arepsilon)^{q+eta}} & ext{for } t \geq 0 \ 0 & ext{for } t < 0, \end{aligned}
ight.$$

where 0 < q < p < 1 and the corresponding perturbed problem

$$\begin{cases} -\Delta u + g_{\varepsilon}(u) = \lambda u^{p} & \text{in } \Omega \\ u = 0 & \text{on } \partial \Omega \end{cases}$$
 (3)

The associated functional $I_{\varepsilon} \in C^1(H^1_0(\Omega), \mathbb{R})$ is given by

$$I_{\varepsilon}(u) = \frac{1}{2} \int_{\Omega} |\nabla u|^2 + \int_{\Omega} G_{\varepsilon}(u) - \frac{\lambda}{p+1} \int_{\Omega} (u^+)^{p+1}$$

where $G_{\varepsilon}(u) = \int_0^t g_{\varepsilon}(s) ds \geq 0$.

Lemma 1

For every $\lambda > 0$, there is $\rho > 0$ such that, $I_{\varepsilon}(u) \geq \frac{1}{4}\rho^2$ whenever $\|u\|_{H_0^1} = \rho$ and $0 < \varepsilon < 1$.

Lemma 1

For every $\lambda > 0$, there is $\rho > 0$ such that, $I_{\varepsilon}(u) \geq \frac{1}{4}\rho^2$ whenever $\|u\|_{H_0^1} = \rho$ and $0 < \varepsilon < 1$.

Lemma 2

For $\lambda > 0$ large enough, we have $I_{\varepsilon}(\varphi_1) < b < 0$.

Lemma 1

For every $\lambda > 0$, there is $\rho > 0$ such that, $I_{\varepsilon}(u) \geq \frac{1}{4}\rho^2$ whenever $\|u\|_{H_0^1} = \rho$ and $0 < \varepsilon < 1$.

Lemma 2

For $\lambda > 0$ large enough, we have $I_{\varepsilon}(\varphi_1) < b < 0$.

Here, $\varphi_1 > 0$ is the first eigenfunction of $-\Delta$ in $H_0^1(\Omega)$.

Lemma 1

For every $\lambda > 0$, there is $\rho > 0$ such that, $I_{\varepsilon}(u) \geq \frac{1}{4}\rho^2$ whenever $\|u\|_{H_0^1} = \rho$ and $0 < \varepsilon < 1$.

Lemma 2

For $\lambda > 0$ large enough, we have $I_{\varepsilon}(\varphi_1) < b < 0$.

Here, $\varphi_1 > 0$ is the first eigenfunction of $-\Delta$ in $H_0^1(\Omega)$.

Proposition 1

For $\lambda > 0$ large enough, and $0 < \varepsilon < 1$; there is b < 0 and a global minimizer $u_{\varepsilon}^1 \in H_0^1(\Omega)$ with $I_{\varepsilon}(u_{\varepsilon}^1) < b$.

Proposition 1

For $\lambda > 0$ large enough, and $0 < \varepsilon < 1$; there is b < 0 and a global minimizer $u_{\varepsilon}^1 \in H_0^1(\Omega)$ with $I_{\varepsilon}(u_{\varepsilon}^1) < b$.

Proposition 2

For $\lambda > 0$ large enough, and $0 < \varepsilon < 1$; there is a > 0 and a critical point $u_{\varepsilon}^2 \in H_0^1(\Omega)$ of mountain pass type such that $I_{\varepsilon}(u_{\varepsilon}^2) > a$.

Fix $\lambda > 0$ sufficiently large.

Fix $\lambda > 0$ sufficiently large.

The critical values $c_{\varepsilon}^1=I_{\varepsilon}(u_{\varepsilon}^1)$ and $c_{\varepsilon}^2=I_{\varepsilon}(u_{\varepsilon}^2)$ satisfy

$$-\infty < \beta \le c_1^{\varepsilon} \le b < 0 < a \le c_2^{\varepsilon} \le \alpha < \infty \tag{4}$$

Fix $\lambda > 0$ sufficiently large.

The critical values $c_{arepsilon}^1=I_{arepsilon}(u_{arepsilon}^1)$ and $c_{arepsilon}^2=I_{arepsilon}(u_{arepsilon}^2)$ satisfy

$$-\infty < \beta \le c_1^{\varepsilon} \le b < 0 < a \le c_2^{\varepsilon} \le \alpha < \infty \tag{4}$$

where the constants β , b, a do not depend on $0 < \varepsilon < 1$.

Fix $\lambda > 0$ sufficiently large.

The critical values $c^1_\varepsilon=I_\varepsilon(u^1_\varepsilon)$ and $c^2_\varepsilon=I_\varepsilon(u^2_\varepsilon)$ satisfy

$$-\infty < \beta \le c_1^{\varepsilon} \le b < 0 < a \le c_2^{\varepsilon} \le \alpha < \infty \tag{4}$$

where the constants β , b, a do not depend on $0 < \varepsilon < 1$. Claim: the upper bound α is independent of $\varepsilon > 0$.

Fix $\lambda > 0$ sufficiently large.

The critical values $c^1_\varepsilon=I_\varepsilon(u^1_\varepsilon)$ and $c^2_\varepsilon=I_\varepsilon(u^2_\varepsilon)$ satisfy

$$-\infty < \beta \le c_1^{\varepsilon} \le b < 0 < a \le c_2^{\varepsilon} \le \alpha < \infty \tag{4}$$

where the constants β , b, a do not depend on $0 < \varepsilon < 1$.

Claim: the upper bound α is independent of $\varepsilon > 0$.

Observe that the solutions u_{ε} of (3) are a priori bounded:

Fix $\lambda > 0$ sufficiently large.

The critical values $c_\varepsilon^1=I_\varepsilon(u_\varepsilon^1)$ and $c_\varepsilon^2=I_\varepsilon(u_\varepsilon^2)$ satisfy

$$-\infty < \beta \le c_1^{\varepsilon} \le b < 0 < a \le c_2^{\varepsilon} \le \alpha < \infty \tag{4}$$

where the constants β , b, a do not depend on $0 < \varepsilon < 1$.

Claim: the upper bound α is independent of $\varepsilon > 0$.

Observe that the solutions u_{ε} of (3) are a priori bounded:

multiply (3) by u_{ε} , integrate, discard the term involving g_{ε} and use the Sobolev imbedding, to obtain

$$c(\Omega) \big(\int_{\Omega} u_{\varepsilon}^{p+1} \big)^{\frac{2}{p+1}} \leq \int_{\Omega} |\nabla u_{\varepsilon}|^2 \leq \lambda \int_{\Omega} u_{\varepsilon}^{p+1}.$$

$$c(\Omega) \left(\int_{\Omega} u_{\varepsilon}^{p+1} \right)^{\frac{2}{p+1}} \leq \int_{\Omega} |\nabla u_{\varepsilon}|^{2} \leq \lambda \int_{\Omega} u_{\varepsilon}^{p+1}.$$

Since $0 , a bootstrap argument implies that the norms <math>\|u_{\varepsilon}\|_{H^1_0(\Omega)}$ and $\|u_{\varepsilon}\|_{L^{\infty}(\Omega)}$ are bounded independent of ε .

$$c(\Omega) \left(\int_{\Omega} u_{\varepsilon}^{p+1} \right)^{\frac{2}{p+1}} \leq \int_{\Omega} |\nabla u_{\varepsilon}|^{2} \leq \lambda \int_{\Omega} u_{\varepsilon}^{p+1}.$$

Since $0 , a bootstrap argument implies that the norms <math>\|u_{\varepsilon}\|_{H_0^1(\Omega)}$ and $\|u_{\varepsilon}\|_{L^{\infty}(\Omega)}$ are bounded independent of ε . From this, $c_2^{\varepsilon} = I_{\varepsilon}(u_{\varepsilon}^2) \leq \alpha$, with $\alpha > 0$ independent of $\varepsilon > 0$.

$$c(\Omega) \left(\int_{\Omega} u_{\varepsilon}^{p+1} \right)^{\frac{2}{p+1}} \leq \int_{\Omega} |\nabla u_{\varepsilon}|^{2} \leq \lambda \int_{\Omega} u_{\varepsilon}^{p+1}.$$

Since $0 , a bootstrap argument implies that the norms <math>\|u_{\varepsilon}\|_{H^1_0(\Omega)}$ and $\|u_{\varepsilon}\|_{L^{\infty}(\Omega)}$ are bounded independent of ε . From this, $c_2^{\varepsilon} = I_{\varepsilon}(u_{\varepsilon}^2) \leq \alpha$, with $\alpha > 0$ independent of $\varepsilon > 0$. The claim is proved.

$$c(\Omega) \left(\int_{\Omega} u_{\varepsilon}^{p+1} \right)^{\frac{2}{p+1}} \leq \int_{\Omega} |\nabla u_{\varepsilon}|^{2} \leq \lambda \int_{\Omega} u_{\varepsilon}^{p+1}.$$

Since $0 , a bootstrap argument implies that the norms <math>\|u_{\varepsilon}\|_{H_0^1(\Omega)}$ and $\|u_{\varepsilon}\|_{L^{\infty}(\Omega)}$ are bounded independent of ε . From this, $c_2^{\varepsilon} = I_{\varepsilon}(u_{\varepsilon}^2) \leq \alpha$, with $\alpha > 0$ independent of $\varepsilon > 0$. The claim is proved. Now, let $\varepsilon \to 0$.

$$c(\Omega) \left(\int_{\Omega} u_{\varepsilon}^{p+1} \right)^{\frac{2}{p+1}} \leq \int_{\Omega} |\nabla u_{\varepsilon}|^{2} \leq \lambda \int_{\Omega} u_{\varepsilon}^{p+1}.$$

From this, $c_2^{\varepsilon} = I_{\varepsilon}(u_{\varepsilon}^2) \leq \alpha$, with $\alpha > 0$ independent of $\varepsilon > 0$. The claim is proved.

Now, let $\varepsilon \to 0$.

Then $c_{arepsilon}^1 o c_1$, $c_{arepsilon}^2 o c_2$ with

$$\beta \le c_1 \le b < 0 < a \le c_2 \le \alpha,$$

$$c(\Omega) \left(\int_{\Omega} u_{\varepsilon}^{p+1} \right)^{\frac{2}{p+1}} \leq \int_{\Omega} |\nabla u_{\varepsilon}|^{2} \leq \lambda \int_{\Omega} u_{\varepsilon}^{p+1}.$$

From this, $c_2^{\varepsilon} = I_{\varepsilon}(u_{\varepsilon}^2) \leq \alpha$, with $\alpha > 0$ independent of $\varepsilon > 0$. The claim is proved.

Now, let $\varepsilon \to 0$.

Then $c_{arepsilon}^1 o c_1$, $c_{arepsilon}^2 o c_2$ with

$$\beta \leq c_1 \leq b < 0 < a \leq c_2 \leq \alpha,$$

Moreover,

$$c(\Omega) \left(\int_{\Omega} u_{\varepsilon}^{p+1} \right)^{\frac{2}{p+1}} \leq \int_{\Omega} |\nabla u_{\varepsilon}|^{2} \leq \lambda \int_{\Omega} u_{\varepsilon}^{p+1}.$$

From this, $c_2^{\varepsilon} = I_{\varepsilon}(u_{\varepsilon}^2) \leq \alpha$, with $\alpha > 0$ independent of $\varepsilon > 0$. The claim is proved.

Now, let $\varepsilon \to 0$.

Then $c_{arepsilon}^1 o c_1$, $c_{arepsilon}^2 o c_2$ with

$$\beta \leq c_1 \leq b < 0 < a \leq c_2 \leq \alpha,$$

Moreover, $u_{\varepsilon}^1 \to u^1$ and $u_{\varepsilon}^2 \to u^2$ a.e., since solutions of (3) are a priori bounded.

$$c(\Omega) \left(\int_{\Omega} u_{\varepsilon}^{p+1} \right)^{\frac{2}{p+1}} \leq \int_{\Omega} |\nabla u_{\varepsilon}|^{2} \leq \lambda \int_{\Omega} u_{\varepsilon}^{p+1}.$$

From this, $c_2^{\varepsilon} = I_{\varepsilon}(u_{\varepsilon}^2) \leq \alpha$, with $\alpha > 0$ independent of $\varepsilon > 0$. The claim is proved.

Now, let $\varepsilon \to 0$.

Then $c_{arepsilon}^1 o c_1$, $c_{arepsilon}^2 o c_2$ with

$$\beta \leq c_1 \leq b < 0 < a \leq c_2 \leq \alpha,$$

Moreover, $u_{\varepsilon}^1 \to u^1$ and $u_{\varepsilon}^2 \to u^2$ a.e., since solutions of (3) are a priori bounded. We also have, $u^1 \neq u^2$ a.e. and they are nontrivial and nonnegative.

$$c(\Omega) \left(\int_{\Omega} u_{\varepsilon}^{p+1} \right)^{\frac{2}{p+1}} \leq \int_{\Omega} |\nabla u_{\varepsilon}|^{2} \leq \lambda \int_{\Omega} u_{\varepsilon}^{p+1}.$$

From this, $c_2^{\varepsilon} = I_{\varepsilon}(u_{\varepsilon}^2) \leq \alpha$, with $\alpha > 0$ independent of $\varepsilon > 0$. The claim is proved.

Now, let $\varepsilon \to 0$.

Then $c_{arepsilon}^1 o c_1$, $c_{arepsilon}^2 o c_2$ with

$$\beta \leq c_1 \leq b < 0 < a \leq c_2 \leq \alpha,$$

Moreover, $u_{\varepsilon}^1 \to u^1$ and $u_{\varepsilon}^2 \to u^2$ a.e., since solutions of (3) are a priori bounded. We also have, $u^1 \neq u^2$ a.e. and they are nontrivial and nonnegative.

Our objective is to obtain gradient estimates for solutions of (3).

$$c(\Omega) \left(\int_{\Omega} u_{\varepsilon}^{p+1} \right)^{\frac{2}{p+1}} \leq \int_{\Omega} |\nabla u_{\varepsilon}|^{2} \leq \lambda \int_{\Omega} u_{\varepsilon}^{p+1}.$$

From this, $c_2^{\varepsilon} = I_{\varepsilon}(u_{\varepsilon}^2) \leq \alpha$, with $\alpha > 0$ independent of $\varepsilon > 0$. The claim is proved.

Now, let $\varepsilon \to 0$.

Then $c_{arepsilon}^1 o c_1$, $c_{arepsilon}^2 o c_2$ with

$$\beta \leq c_1 \leq b < 0 < a \leq c_2 \leq \alpha,$$

Moreover, $u_{\varepsilon}^1 \to u^1$ and $u_{\varepsilon}^2 \to u^2$ a.e., since solutions of (3) are a priori bounded. We also have, $u^1 \neq u^2$ a.e. and they are nontrivial and nonnegative.

Our objective is to obtain gradient estimates for solutions of (3). Then, taking $\varepsilon \to 0$.

$$c(\Omega) \left(\int_{\Omega} u_{\varepsilon}^{p+1} \right)^{\frac{2}{p+1}} \leq \int_{\Omega} |\nabla u_{\varepsilon}|^{2} \leq \lambda \int_{\Omega} u_{\varepsilon}^{p+1}.$$

From this, $c_2^{\varepsilon} = I_{\varepsilon}(u_{\varepsilon}^2) \leq \alpha$, with $\alpha > 0$ independent of $\varepsilon > 0$. The claim is proved.

Now, let $\varepsilon \to 0$.

Then $c_{arepsilon}^1 o c_1$, $c_{arepsilon}^2 o c_2$ with

$$\beta \leq c_1 \leq b < 0 < a \leq c_2 \leq \alpha,$$

Moreover, $u_{\varepsilon}^1 \to u^1$ and $u_{\varepsilon}^2 \to u^2$ a.e., since solutions of (3) are a priori bounded. We also have, $u^1 \neq u^2$ a.e. and they are nontrivial and nonnegative.

Our objective is to obtain gradient estimates for solutions of (3). Then, taking $\varepsilon \to 0$, we show that the functions u_1 and u_2 are solutions of (1).

Let the weight ψ be such that

$$\psi\in \mathit{C}^2(\overline{\Omega}),\ \psi>0\ \text{in}\ \Omega,\ \psi=0\ \text{on}\ \partial\Omega\ \text{and}\ \frac{|\nabla\psi|^2}{\psi}\ \text{is bounded in}\ \Omega.$$

Let the weight ψ be such that

$$\psi \in \mathit{C}^2(\overline{\Omega}), \; \psi > 0 \text{ in } \Omega, \; \psi = 0 \text{ on } \partial\Omega \text{ and } \frac{|\nabla \psi|^2}{\psi} \text{ is bounded in } \Omega.$$

Observe that $\psi=\varphi_1^2$ is a possible example.

Let the weight ψ be such that

$$\psi\in \mathit{C}^2(\overline{\Omega}),\ \psi>0\ \text{in}\ \Omega,\ \psi=0\ \text{on}\ \partial\Omega\ \text{and}\ \frac{|\nabla\psi|^2}{\psi}\ \text{is bounded in}\ \Omega.$$

Observe that $\psi=\varphi_1^2$ is a possible example.

Lemma 3

If u_{ε} is a solution of (3), then there is a constant M>0 independent of ε such that

$$\psi(x)|\nabla u_{\varepsilon}(x)|^2 \leq M(u_{\varepsilon}(x)^{1-\beta} + u_{\varepsilon}(x)) \quad \forall x \in \Omega,$$

where M depends only on Ω , N, β , ψ and $\|u_{\varepsilon}\|_{L^{\infty}(\Omega)}$.

► The proof of this lemma is based on an argument by Dávila - Montenegro.

- ► The proof of this lemma is based on an argument by Dávila -Montenegro.
- ▶ Remark that a nontrivial solution u_{ε} of (3) is nonnegative and belongs to $C^2(\overline{\Omega})$. However, we cannot use the maximum principle to ensure that u_{ε} is positive or identically zero, since $u^{q-1}/(u+\varepsilon)^{q+\beta}$ is singular when $u \sim 0$.

- ► The proof of this lemma is based on an argument by Dávila -Montenegro.
- ▶ Remark that a nontrivial solution u_{ε} of (3) is nonnegative and belongs to $C^2(\overline{\Omega})$. However, we cannot use the maximum principle to ensure that u_{ε} is positive or identically zero, since $u^{q-1}/(u+\varepsilon)^{q+\beta}$ is singular when $u \sim 0$.
- Consider the functions

$$w = \frac{|\nabla u|^2}{Z(u)}, \qquad v = w\psi,$$

where $Z(u_{\varepsilon})=u_{\varepsilon}^{1-\beta}+u_{\varepsilon}+\delta$, with $\delta>0$, in order to have Z>0.

- The proof of this lemma is based on an argument by Dávila -Montenegro.
- ▶ Remark that a nontrivial solution u_{ε} of (3) is nonnegative and belongs to $C^2(\overline{\Omega})$. However, we cannot use the maximum principle to ensure that u_{ε} is positive or identically zero, since $u^{q-1}/(u+\varepsilon)^{q+\beta}$ is singular when $u \sim 0$.
- Consider the functions

$$w = \frac{|\nabla u|^2}{Z(u)}, \qquad v = w\psi,$$

where $Z(u_{\varepsilon}) = u_{\varepsilon}^{1-\beta} + u_{\varepsilon} + \delta$, with $\delta > 0$, in order to have Z > 0. In the end of the proof, we let $\delta \to 0$.

- The proof of this lemma is based on an argument by Dávila -Montenegro.
- ▶ Remark that a nontrivial solution u_{ε} of (3) is nonnegative and belongs to $C^2(\overline{\Omega})$. However, we cannot use the maximum principle to ensure that u_{ε} is positive or identically zero, since $u^{q-1}/(u+\varepsilon)^{q+\beta}$ is singular when $u\sim 0$.
- Consider the functions

$$w = \frac{|\nabla u|^2}{Z(u)}, \qquad v = w\psi,$$

where $Z(u_{\varepsilon}) = u_{\varepsilon}^{1-\beta} + u_{\varepsilon} + \delta$, with $\delta > 0$, in order to have Z > 0. In the end of the proof, we let $\delta \to 0$.

▶ We also use the fact that a nontrivial solution u_{ε} of (3) belongs to C^3 on a neighborhood of every point where it is positive

Next result shows that $u_{arepsilon}$ converges in C^1_{loc} to some u which is in

$$C_{loc}^{\frac{1-\beta}{1+\beta}}$$
.

Next result shows that u_ε converges in C^1_{loc} to some u which is in $C^{\frac{1-\beta}{1+\beta}}$.

Lemma 4

For any $\Omega' \subset \Omega$ there exists C such that

$$|\nabla u_{\varepsilon}(x) - \nabla u_{\varepsilon}(y)| \le C|x-y|^{\frac{1-\beta}{1+\beta}} \quad \forall x, y \in \Omega'.$$

The constant C depends only on Ω , N, β , p, $\|u_{\varepsilon}\|_{L^{\infty}(\Omega)}$, but not on ε .

Considering u, a weak limit of solutions u_{ε} of (3),

Lemma 5
$$\frac{1}{u^{\beta}}\chi_{\Omega_{+}} \in L^{1}_{loc}(\Omega), \text{ where } \Omega_{+} = \{x \in \Omega : u(x) > 0\}.$$

Considering u, a weak limit of solutions u_{ε} of (3),

Lemma 5
$$\frac{1}{u^{\beta}}\chi_{\Omega_{+}} \in L^{1}_{loc}(\Omega), \text{ where } \Omega_{+} = \{x \in \Omega : u(x) > 0\}.$$

▶ The proof is done by choosing appropriate test functions for the perturbed problem.

Let $\eta \in C^{\infty}(\mathbb{R})$, $0 \le \eta \le 1$, $\eta(s) = 0$ for $s \le 1/2$, $\eta(s) = 1$ for $s \ge 1$.

Let $\eta \in C^{\infty}(\mathbb{R})$, $0 \le \eta \le 1$, $\eta(s) = 0$ for $s \le 1/2$, $\eta(s) = 1$ for $s \ge 1$. Given $\varphi \in C^1_c(\Omega)$,

Let $\eta \in C^{\infty}(\mathbb{R})$, $0 \le \eta \le 1$, $\eta(s) = 0$ for $s \le 1/2$, $\eta(s) = 1$ for $s \ge 1$. Given $\varphi \in C^1_c(\Omega)$, for m > 0, we have

$$\int_{\Omega} \nabla u_{\varepsilon} \nabla (\varphi \eta(u_{\varepsilon}/m)) = \int_{\hat{\Omega}} (-g_{\varepsilon}(u_{\varepsilon}) + \lambda u_{\varepsilon}^{p}) \varphi \eta(u_{\varepsilon}/m), \qquad (5)$$

Let $\eta \in C^{\infty}(\mathbb{R})$, $0 \le \eta \le 1$, $\eta(s) = 0$ for $s \le 1/2$, $\eta(s) = 1$ for $s \ge 1$. Given $\varphi \in C_c^1(\Omega)$, for m > 0, we have

$$\int_{\Omega} \nabla u_{\varepsilon} \nabla (\varphi \eta(u_{\varepsilon}/m)) = \int_{\widehat{\Omega}} (-g_{\varepsilon}(u_{\varepsilon}) + \lambda u_{\varepsilon}^{p}) \varphi \eta(u_{\varepsilon}/m), \quad (5)$$

where $\hat{\Omega}$ is an open set such that $\overline{\hat{\Omega}}\subset\Omega$ and $\operatorname{support}(\varphi)\subset\hat{\Omega}$.

Let $\eta \in C^{\infty}(\mathbb{R})$, $0 \le \eta \le 1$, $\eta(s) = 0$ for $s \le 1/2$, $\eta(s) = 1$ for $s \ge 1$. Given $\varphi \in C^1_c(\Omega)$, for m > 0, we have

$$\int_{\Omega} \nabla u_{\varepsilon} \nabla (\varphi \eta(u_{\varepsilon}/m)) = \int_{\widehat{\Omega}} (-g_{\varepsilon}(u_{\varepsilon}) + \lambda u_{\varepsilon}^{p}) \varphi \eta(u_{\varepsilon}/m), \quad (5)$$

where $\hat{\Omega}$ is an open set such that $\overline{\hat{\Omega}} \subset \Omega$ and support $(\varphi) \subset \hat{\Omega}$. Set $\Omega_0 = \Omega_+ \cap \hat{\Omega}$.

Let $\eta \in C^{\infty}(\mathbb{R})$, $0 \le \eta \le 1$, $\eta(s) = 0$ for $s \le 1/2$, $\eta(s) = 1$ for $s \ge 1$. Given $\varphi \in C^1_c(\Omega)$, for m > 0, we have

$$\int_{\Omega} \nabla u_{\varepsilon} \nabla (\varphi \eta(u_{\varepsilon}/m)) = \int_{\widehat{\Omega}} (-g_{\varepsilon}(u_{\varepsilon}) + \lambda u_{\varepsilon}^{p}) \varphi \eta(u_{\varepsilon}/m), \quad (5)$$

where $\hat{\Omega}$ is an open set such that $\overline{\hat{\Omega}} \subset \Omega$ and $\operatorname{support}(\varphi) \subset \hat{\Omega}$. Set $\Omega_0 = \Omega_+ \cap \hat{\Omega}$. Since $u_\varepsilon \to u$ in $C^1_{loc}(\Omega)$,

Let $\eta \in C^{\infty}(\mathbb{R})$, $0 \le \eta \le 1$, $\eta(s) = 0$ for $s \le 1/2$, $\eta(s) = 1$ for $s \ge 1$.

Given $\varphi \in C_c^1(\Omega)$, for m > 0, we have

$$\int_{\Omega} \nabla u_{\varepsilon} \nabla (\varphi \eta(u_{\varepsilon}/m)) = \int_{\hat{\Omega}} (-g_{\varepsilon}(u_{\varepsilon}) + \lambda u_{\varepsilon}^{p}) \varphi \eta(u_{\varepsilon}/m), \quad (5)$$

where $\hat{\Omega}$ is an open set such that $\hat{\Omega} \subset \Omega$ and support $(\varphi) \subset \hat{\Omega}$. Set $\Omega_0 = \Omega_+ \cap \hat{\Omega}$.

Since $u_{\varepsilon} \to u$ in $C^1_{loc}(\Omega)$, for every given m > 0, there is an $\varepsilon_0 > 0$ such that

$$u_{\varepsilon}(x) \leq m/2, \quad \forall x \in \Omega_0 \setminus \Omega_+ \text{ and } 0 < \varepsilon \leq \varepsilon_0.$$
 (6)

Let $\eta \in C^{\infty}(\mathbb{R})$, $0 \le \eta \le 1$, $\eta(s) = 0$ for $s \le 1/2$, $\eta(s) = 1$ for $s \ge 1$.

Given $\varphi \in C_c^1(\Omega)$, for m > 0, we have

$$\int_{\Omega} \nabla u_{\varepsilon} \nabla (\varphi \eta(u_{\varepsilon}/m)) = \int_{\hat{\Omega}} (-g_{\varepsilon}(u_{\varepsilon}) + \lambda u_{\varepsilon}^{p}) \varphi \eta(u_{\varepsilon}/m), \quad (5)$$

where $\hat{\Omega}$ is an open set such that $\hat{\Omega} \subset \Omega$ and support $(\varphi) \subset \hat{\Omega}$. Set $\Omega_0 = \Omega_+ \cap \hat{\Omega}$.

Since $u_{\varepsilon} \to u$ in $C^1_{loc}(\Omega)$, for every given m > 0, there is an $\varepsilon_0 > 0$ such that

$$u_{\varepsilon}(x) \leq m/2, \quad \forall x \in \Omega_0 \setminus \Omega_+ \text{ and } 0 < \varepsilon \leq \varepsilon_0.$$
 (6)

Taking $0 < \varepsilon < \varepsilon_0$,

Taking $0 < \varepsilon < \varepsilon_0$, We split the previous integral as

$$A_{\varepsilon} := \int_{\Omega_0} (-g_{\varepsilon}(u_{\varepsilon}) + \lambda u_{\varepsilon}^p) \varphi \eta(u_{\varepsilon}/m)$$

and

$$B_{\varepsilon} := \int_{\hat{\Omega} \setminus \Omega_0} (-g_{\varepsilon}(u_{\varepsilon}) + \lambda u_{\varepsilon}^p) \varphi \eta(u_{\varepsilon}/m).$$

Taking $0 < \varepsilon < \varepsilon_0$, We split the previous integral as

$$A_{\varepsilon} := \int_{\Omega_0} (-g_{\varepsilon}(u_{\varepsilon}) + \lambda u_{\varepsilon}^p) \varphi \eta(u_{\varepsilon}/m)$$

and

$$\mathcal{B}_arepsilon := \int_{\hat{\Omega} \setminus \Omega_0} (- g_arepsilon(u_arepsilon) + \lambda u_arepsilon^p) arphi \eta(u_arepsilon/m).$$

Clearly, $B_{\varepsilon} = 0$ by (6) and the definition of η .

Taking $0 < \varepsilon < \varepsilon_0$, We split the previous integral as

$$A_{\varepsilon} := \int_{\Omega_0} (-g_{\varepsilon}(u_{\varepsilon}) + \lambda u_{\varepsilon}^{p}) \varphi \eta(u_{\varepsilon}/m)$$

and

$$\mathcal{B}_arepsilon := \int_{\hat{\Omega} \setminus \Omega_0} (- \mathsf{g}_arepsilon(u_arepsilon) + \lambda u_arepsilon^p) arphi \eta(u_arepsilon/m).$$

Clearly, $B_{\varepsilon} = 0$ by (6) and the definition of η . Moreover,

$$A_arepsilon o \int_{\Omega_0} (-u^{-eta} + \lambda u^p) arphi \eta(u/m) \quad ext{ as } arepsilon o 0.$$

Taking $0 < \varepsilon < \varepsilon_0$, We split the previous integral as

$$A_{\varepsilon} := \int_{\Omega_0} (-g_{\varepsilon}(u_{\varepsilon}) + \lambda u_{\varepsilon}^{p}) \varphi \eta(u_{\varepsilon}/m)$$

and

$$B_{\varepsilon} := \int_{\hat{\Omega} \setminus \Omega_0} (-g_{\varepsilon}(u_{\varepsilon}) + \lambda u_{\varepsilon}^p) \varphi \eta(u_{\varepsilon}/m).$$

Clearly, $B_{\varepsilon}=0$ by (6) and the definition of η . Moreover,

$$A_arepsilon o \int_{\Omega_0} (-u^{-eta} + \lambda u^p) arphi \eta(u/m) \quad ext{ as } arepsilon o 0.$$

If $u \le m/4$, for a sufficiently small $\varepsilon > 0$, we have $u_{\varepsilon} \le m/2$. The integral A_{ε} restricted to this set is zero.

Taking $0 < \varepsilon < \varepsilon_0$, We split the previous integral as

$$A_{\varepsilon} := \int_{\Omega_0} (-g_{\varepsilon}(u_{\varepsilon}) + \lambda u_{\varepsilon}^{p}) \varphi \eta(u_{\varepsilon}/m)$$

and

$$B_{\varepsilon} := \int_{\hat{\Omega} \setminus \Omega_0} (-g_{\varepsilon}(u_{\varepsilon}) + \lambda u_{\varepsilon}^p) \varphi \eta(u_{\varepsilon}/m).$$

Clearly, $B_{\varepsilon} = 0$ by (6) and the definition of η . Moreover,

$$A_{\varepsilon} o \int_{\Omega_0} (-u^{-\beta} + \lambda u^p) \varphi \eta(u/m) \quad \text{ as } \varepsilon o 0.$$

If $u \le m/4$, for a sufficiently small $\varepsilon > 0$, we have $u_{\varepsilon} \le m/2$. The integral A_{ε} restricted to this set is zero.

If u>m/4, we have $u_{\varepsilon}\geq m/8$ for $\varepsilon>0$ small enough.

Taking $0 < \varepsilon < \varepsilon_0$, We split the previous integral as

$$A_{\varepsilon} := \int_{\Omega_0} (-g_{\varepsilon}(u_{\varepsilon}) + \lambda u_{\varepsilon}^p) \varphi \eta(u_{\varepsilon}/m)$$

and

$$B_{\varepsilon} := \int_{\hat{\Omega} \setminus \Omega_0} (-g_{\varepsilon}(u_{\varepsilon}) + \lambda u_{\varepsilon}^p) \varphi \eta(u_{\varepsilon}/m).$$

Clearly, $B_{\varepsilon} = 0$ by (6) and the definition of η . Moreover,

$$A_arepsilon o \int_{\Omega_0} (-u^{-eta} + \lambda u^p) arphi \eta(u/m) \quad ext{ as } arepsilon o 0.$$

If $u \le m/4$, for a sufficiently small $\varepsilon > 0$, we have $u_{\varepsilon} \le m/2$. The integral A_{ε} restricted to this set is zero.

If u>m/4, we have $u_{\varepsilon}\geq m/8$ for $\varepsilon>0$ small enough. Then, we apply the Dominated Convergence Theorem.

$$A_{arepsilon} o \int_{\Omega_0} (-u^{-eta} + \lambda u^p) arphi \qquad ext{as } arepsilon o 0 \quad ext{(and then as } m o 0)$$

$$A_{arepsilon} o \int_{\Omega_0} (-u^{-eta} + \lambda u^p) arphi \qquad ext{as } arepsilon o 0 \quad ext{(and then as } m o 0)$$

Note that $\eta(u/m) \leq 1$ and $-u^{-\beta} + u^p \in L^1(\Omega_0)$.

$$A_{arepsilon} o \int_{\Omega_0} (-u^{-eta} + \lambda u^p) arphi \qquad ext{as } arepsilon o 0 \quad ext{(and then as } m o 0)$$

Note that $\eta(u/m) \leq 1$ and $-u^{-\beta} + u^p \in L^1(\Omega_0)$. Now,

$$A_{arepsilon} o \int_{\Omega_0} (-u^{-eta} + \lambda u^p) arphi$$
 as $arepsilon o 0$ (and then as $m o 0$)

Note that $\eta(u/m) \leq 1$ and $-u^{-\beta} + u^p \in L^1(\Omega_0)$. Now, considering the first integral in (5),

$$A_{arepsilon} o \int_{\Omega_0} (-u^{-eta} + \lambda u^p) arphi \qquad ext{as } arepsilon o 0 \quad ext{(and then as } m o 0)$$

Note that $\eta(u/m) \leq 1$ and $-u^{-\beta} + u^p \in L^1(\Omega_0)$. Now, considering the first integral in (5), we set

$$\int_{\Omega} \nabla u_{\varepsilon} \nabla (\varphi \eta(u_{\varepsilon}/m)) := H_{\varepsilon} + J_{\varepsilon}.$$

$$A_arepsilon o \int_{\Omega_0} (-u^{-eta} + \lambda u^p) arphi \qquad ext{as } arepsilon o 0 \quad ext{(and then as } m o 0)$$

Note that $\eta(u/m) \leq 1$ and $-u^{-\beta} + u^p \in L^1(\Omega_0)$. Now, considering the first integral in (5), we set

$$\int_{\Omega} \nabla u_{\varepsilon} \nabla (\varphi \eta(u_{\varepsilon}/m)) := H_{\varepsilon} + J_{\varepsilon}.$$

Clearly,

$$H_arepsilon:=\int_\Omega (
abla u_arepsilon
abla arphi) \eta(u_arepsilon/m)
ightarrow \int_{\Omega_0} (
abla u
abla arphi) \eta(u/m) \quad ext{ as } arepsilon
ightarrow 0.$$

and

$$A_arepsilon o \int_{\Omega_0} (-u^{-eta} + \lambda u^p) arphi \qquad ext{as } arepsilon o 0 \quad ext{(and then as } m o 0)$$

Note that $\eta(u/m) \leq 1$ and $-u^{-\beta} + u^p \in L^1(\Omega_0)$. Now, considering the first integral in (5), we set

$$\int_{\Omega} \nabla u_{\varepsilon} \nabla (\varphi \eta(u_{\varepsilon}/m)) := H_{\varepsilon} + J_{\varepsilon}.$$

Clearly,

$$H_{arepsilon}:=\int_{\Omega}(
abla u_{arepsilon}
ablaarphi)\eta(u_{arepsilon}/m)
ightarrow\int_{\Omega_{0}}(
abla u
ablaarphi)\eta(u/m)\quad ext{ as }arepsilon
ightarrow0.$$

and

$$\int_{\Omega_0} (\nabla u \nabla \varphi) \eta(u/m) \to \int_{\Omega_0} \nabla u \nabla \varphi \quad \text{ as } m \to 0,$$

$$A_arepsilon o \int_{\Omega_0} (-u^{-eta} + \lambda u^p) arphi \qquad ext{as } arepsilon o 0 \quad ext{(and then as } m o 0)$$

Note that $\eta(u/m) \leq 1$ and $-u^{-\beta} + u^p \in L^1(\Omega_0)$. Now, considering the first integral in (5), we set

$$\int_{\Omega} \nabla u_{\varepsilon} \nabla (\varphi \eta(u_{\varepsilon}/m)) := H_{\varepsilon} + J_{\varepsilon}.$$

Clearly,

$$H_arepsilon := \int_\Omega (
abla u_arepsilon
abla arphi) \eta(u_arepsilon/m)
ightarrow \int_{\Omega_0} (
abla u
abla arphi) \eta(u/m) \quad ext{ as } arepsilon
ightarrow 0.$$

and

$$\int_{\Omega_0} (\nabla u \nabla \varphi) \eta(u/m) \to \int_{\Omega_0} \nabla u \nabla \varphi \quad \text{ as } m \to 0,$$

by the Dominated Convergence Theorem.

We assert that

$$J_arepsilon:=\int_{\Omega_0}rac{|
abla u_arepsilon|^2}{m}\eta'(u_arepsilon/m)arphi o 0 \quad ext{ as }arepsilon o 0 \quad ext{(and then as }m o 0).$$

We assert that

$$J_arepsilon:=\int_{\Omega_0}rac{|
abla u_arepsilon|^2}{m}\eta'(u_arepsilon/m)arphi o 0 \quad ext{ as }arepsilon o 0 \quad ext{(and then as }m o 0).$$

By the estimate $|\nabla u_{\varepsilon}|^2 \leq M(u_{\varepsilon}^{1-\beta} + u_{\varepsilon})$ in Ω_0 (provided by Lemma 3), we obtain

$$|J_{\varepsilon}| \leq M \int_{\Omega_0 \cap \{\frac{m}{2} \leq u_{\varepsilon} \leq m\}} \frac{(u_{\varepsilon}^{1-\beta} + u_{\varepsilon})}{m} \eta'(u_{\varepsilon}/m) \varphi \to$$

$$0 o M \int_{\Omega_0 \cap \{ rac{m}{2} \le u \le m \}} rac{\left(u^{1-eta} + u
ight)}{m} \eta'(u/m) arphi \quad ext{ as } arepsilon o 0,$$

but this last integral goes to 0 as $m \to 0$.

We have shown that,

$$\int_{\Omega} (-g_{\varepsilon}(u_{\varepsilon}) + \lambda u_{\varepsilon}^{p}) \varphi \eta(u_{\varepsilon}/m) \to \int_{\Omega_{0}} (-u^{-\beta} + \lambda u^{p}) \varphi$$

and

$$\int_{\Omega} (-g_{\varepsilon}(u_{\varepsilon}) + \lambda u_{\varepsilon}^{p}) \varphi \eta(u_{\varepsilon}/m) \to \int_{\Omega_{0}} (-u^{-\beta} + \lambda u^{p}) \varphi$$

and

$$\int_{\Omega} \nabla u_{\varepsilon} \nabla (\varphi \eta(u_{\varepsilon}/m)) \to \int_{\Omega} \nabla u \nabla \varphi$$

$$\int_{\Omega} (-g_{\varepsilon}(u_{\varepsilon}) + \lambda u_{\varepsilon}^{p}) \varphi \eta(u_{\varepsilon}/m) \to \int_{\Omega_{0}} (-u^{-\beta} + \lambda u^{p}) \varphi$$

and

$$\int_{\Omega} \nabla u_{\varepsilon} \nabla (\varphi \eta(u_{\varepsilon}/m)) \rightarrow \int_{\Omega} \nabla u \nabla \varphi$$

Combining these facts with (5), we obtain

$$\int_{\Omega} \nabla u \nabla \varphi = \int_{\{u > 0\}} \left(-\frac{1}{u^{\beta}} + \lambda u^{\rho} \right) \varphi$$

for every $\varphi \in C^1_c(\Omega)$.

$$\int_{\Omega} (-g_{\varepsilon}(u_{\varepsilon}) + \lambda u_{\varepsilon}^{p}) \varphi \eta(u_{\varepsilon}/m) \to \int_{\Omega_{0}} (-u^{-\beta} + \lambda u^{p}) \varphi$$

and

$$\int_{\Omega} \nabla u_{\varepsilon} \nabla (\varphi \eta (u_{\varepsilon}/m)) \rightarrow \int_{\Omega} \nabla u \nabla \varphi$$

Combining these facts with (5), we obtain

$$\int_{\Omega} \nabla u \nabla \varphi = \int_{\{u > 0\}} \left(-\frac{1}{u^{\beta}} + \lambda u^{\rho} \right) \varphi$$

for every $\varphi \in C_c^1(\Omega)$.

This concludes the proof of Theorem 1.

Our second result reads as follows.

Our second result reads as follows.

Theorem 2

Problem (1) has a positive solution for $\lambda > 0$ large.

Our second result reads as follows.

Theorem 2

Problem (1) has a positive solution for $\lambda > 0$ large.

▶ We are unable to prove that one of the solutions of Theorem 1 is positive.

Our second result reads as follows.

Theorem 2

Problem (1) has a positive solution for $\lambda > 0$ large.

We are unable to prove that one of the solutions of Theorem 1 is positive. We believe that one of them is positive and the other one vanishes somewhere in Ω .

Our second result reads as follows.

Theorem 2

Problem (1) has a positive solution for $\lambda > 0$ large.

 \blacktriangleright We are unable to prove that one of the solutions of Theorem 1 is positive. We believe that one of them is positive and the other one vanishes somewhere in Ω . This would be in agreement with the result for the radial problem proved by Ouyang - Shi - Yao.

▶ Theorem 2 is related to a result by Dávila:

▶ Theorem 2 is related to a result by Dávila: for λ grater than a precise constant, the maximal solution u_{λ} is a strict local minimizer I in the convex subset of $H_0^1(\Omega)$ of nonnegative functions in Ω .

Proof of Theorem 2

Proof of Theorem 2

Associated with problem (1) we have the functional $I: H^1_0(\Omega) \to \mathbb{R}$ given by

$$I(u) = \int_{\Omega} \frac{1}{2} |\nabla u|^2 - F(u^+),$$

where $f(u) = -\frac{1}{u^{\beta}} + \lambda u^{p}$ and $F(u) = \int_{0}^{u} f(s) ds$.

It is known (Dávila-Montenegro) that $\underline{u}=c\varphi_1^{\frac{2}{1+\beta}}$ is a subsolution (if λ is large) for the problem (1), which in our new notation is

$$\begin{cases} -\Delta u = f(u) & \text{in } \Omega \\ u = 0 & \text{on } \partial \Omega. \end{cases}$$
 (7)

Take a sequence of smooth domains

$$\emptyset \neq \Omega_1 \subset\subset \Omega_2...\subset\subset \Omega$$

such that $\Omega = \bigcup_{k=1}^{\infty} \Omega_k$. Define the truncated function

$$\hat{f}(u) = \begin{cases} f(\underline{u}(x)) \text{ for } s \leq \underline{u}(x) \\ f(s) \text{ for } s \geq \underline{u}(x) \end{cases}$$
 (8)

Consider the truncated problems on each domain Ω_k ,

$$\begin{cases} -\Delta u_k = \hat{f}(u_k) & \text{in } \Omega_k \\ u_k = \underline{u}(x) & \text{on } \partial \Omega_k. \end{cases}$$
 (9)

In order to find a solution to (9) we consider the translated problem for $v_k = u_k - \underline{u}$ with homogeneous boundary conditions

$$\begin{cases} -\Delta v_k = \hat{f}(v_k + \underline{u}) - \Delta \underline{u} & \text{in } \Omega_k \\ v_k = 0 & \text{on } \partial \Omega_k. \end{cases}$$
 (10)

Define the functional $\widetilde{I}_k: H^1_0(\Omega_k) o \mathbb{R}$ by

$$\tilde{I}_k(v) = \int_{\Omega_k} \frac{1}{2} |\nabla v|^2 - \tilde{F}(v) + \nabla \underline{u} \nabla v,$$

here

$$\tilde{F}(v) = \int_0^v \hat{f}(t^+ + \underline{u}) dt.$$

Notice that

$$\tilde{F}(v) = \begin{cases}
f(\underline{u}(x))v \text{ for } v \leq 0 \\
\hat{F}(v + \underline{u}) - \hat{F}(\underline{u}) \text{ for } v > 0
\end{cases}$$
(11)

where $\hat{F}(s) = \int_0^s \hat{f}(t) dt$.

 $ightharpoonup \tilde{l}_k$ is coercive and satisfies the Palais-Smale condition.

- $ightharpoonup \tilde{l}_k$ is coercive and satisfies the Palais-Smale condition.
- ▶ There is $v_k \in H^1_0(\Omega_k)$ such that

$$\tilde{I}_k(v_k) = \inf_{v \in H^1_0(\Omega_k)} \tilde{I}_k(v).$$

- $ightharpoonup \tilde{l}_k$ is coercive and satisfies the Palais-Smale condition.
- ▶ There is $v_k \in H_0^1(\Omega_k)$ such that

$$\widetilde{I}_k(v_k) = \inf_{v \in H^1_0(\Omega_k)} \widetilde{I}_k(v).$$

- $u_k = v_k + \underline{u}$ is a solution of (9).
- $v_k \ge 0$ on Ω_k (by the maximum principle since \underline{u} is a subsolution).
- ▶ Given k_0 , $||v_k||_{H_0^1(\Omega_{k_0})}$ is bounded for every $k \ge k_0$.

Taking a subsequence, we obtain

- $ightharpoonup u_k
 ightharpoonup u$ in $H_0^1(\Omega)$,
- $u_k \to u$ in L^{σ} for $1 \le \sigma < 2N/(N-2)$,
- ▶ $u_k \rightarrow u$ a.e in Ω .
- ▶ Hence $\underline{u} \le u$ in Ω .

Let φ be a test function in $C_0^\infty(\Omega)$. There is a k'>0 and a bounded domain Ω' such that $support(\varphi)\subset\subset\Omega'\subset\subset\Omega_k$ for every $k\geq k'$. Thus,

$$\int_{\Omega'} \nabla u_k \nabla \varphi = \int_{\Omega'} f(u_k) \varphi \quad \text{for every } k \geq k'.$$

Letting $k \to \infty$ we obtain

$$\int_{\Omega'} \nabla u \nabla \varphi = \int_{\Omega'} f(u) \varphi.$$

This last integral also holds in Ω , so u is a weak solution.

Let φ be a test function in $C_0^\infty(\Omega)$. There is a k'>0 and a bounded domain Ω' such that $support(\varphi)\subset\subset\Omega'\subset\subset\Omega_k$ for every $k\geq k'$. Thus,

$$\int_{\Omega'} \nabla u_k \nabla \varphi = \int_{\Omega'} f(u_k) \varphi \quad \text{for every } k \geq k'.$$

Letting $k \to \infty$ we obtain

$$\int_{\Omega'} \nabla u \nabla \varphi = \int_{\Omega'} f(u) \varphi.$$

This last integral also holds in Ω , so u is a weak solution.