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I was attracted to pursue my graduate study at Stony Brook by

the following two books:

Cheeger and Ebin, Comparison Theorems in Riemannian Geom-

etry

Lawson, The Theory of Gauge Fields in Four Dimensions



I was partly supported by the Simons Graduate Fellowship for

some time during my graduate study there.

Going to Stony Brook was clearly one of the most important

steps I took that determines my future life.

I named my daughter by the Chinese characters for Stony Brook:
周 石 溪



• Motivations: 1. Integrations on loop spaces or path spaces

2. Cohomology theory of loop spaces or path spaces

3. Relationship with elliptic genus

• Example: Index as integrations over loop spaces (Witten,

Bismut, ...)

• Example: Motivatic integrations over the formal path space

(Kontsevich, Denef, Loeser, ...)



• Objective: Study path space by local coordinates.

• Tool: Taylor expansions.

• Subjects: Smooth functions, vector fields, differential forms,

etc.

• Outcome: Infinite dimensional Lie algebras

generated by differential operators.



Formal path space

• c : (−a, a) → M : a path in a smooth manifold

• {xi} local coordinates on M

• Taylor expansion: xi(t) =
∑∞

k=0 xi,ktk.

• Key idea: Use {xi,k} as local coordinates to define the formal

path space PM .



Coordinate changes

• Let {yj} be another local coordinate system, given by smooth

functions:

yj = yj(x1, . . . , xn).

• The relationship between {yi,k} and {xj,l} is given by the

power series expansion:

yi(x1(t), . . . , xn(t)).



• For example,

yi,1 =
∂yi

∂xj
xj,1

yi,2 =
1

2

∂2yi

∂xj1∂xj2
xj1,1xj2,1 +

∂yi

∂xj
xj,2,

yi,3 =
1

6

∂3yi

∂xj1∂xj2∂xj3
xj1,1xj2,1xj3,1 +

∂2yi

∂xj1∂xj2
xj1,2xj2,1 +

∂2yi

∂xj1
xj1,3,

• In general, yi,k is a weighted homogeneous polynomial of xj,l

(l ≥ 1) of degree k.



Notations for partitions

• A partition of k is a sequence of integers µ = (µ1, . . . , µl)

such that µ1 + · · ·+ µl = k, µ1 ≥ · · · ≥ µl ≥ 1.

• |µ| := k is called the weight of µ, l(µ) := l: the length of µ

and is denoted by l(µ).

• Also write µ = (1m12m2 · · ·nmn). E.g. µ = (3,3,1) = (1132),

l(µ) = 3, |µ| = 3 + 3 + 1 = 7.



Some general facts about Taylor series expansion

• Let f be a smooth function in x1, . . . , xn.

• Let the Taylor series of f(x1(t), . . . , xn(t)) be

Pf =
∞∑

k=0

f(k)t
k.



• Then we have

f(k) =
∑

|µ|=k

Cµ
∑

1≤j1,...,jl(µ)≤n

∂l(µ)f

∂xj1 · · · ∂xjl(µ)
· 1(

k
µ

)xj1,µ1 · · ·xjl(µ),µl(µ),

where

C(1m12m2··· ) =
(
∑

i≥1 imi)!∏
i≥1((i!)m1mi!)

,

(
k
µ

)
=

k!
∏l(µ)

i=1 µi!
.

• In particular, we have

yi,k =
∑

|µ|=k

Cµ
∑

1≤j1,...,jl(µ)≤n

∂l(µ)yi

∂xj1 · · · ∂xjl(µ)
· 1(

k
µ

)xj1,µ1 · · ·xjl(µ),µl(µ).



We will prove the following two identities:

n∑

j=1

∞∑

l=1

lxj,l
∂f(k)

∂xj,l+a
= (k − a)f(k−a).

∂f(k)

∂xj,l
=

∂f(k−l)

∂xj
.

In particular,

∂yi,k

∂xj,l
=

∂yi,k−l

∂xi
.



For example,

yi,1 =
∂yi

∂xj
xj,1

yi,2 =
1

2

∂2yi

∂xj1∂xj2
xj1,1xj2,1 +

∂yi

∂xj
xj,2,

yi,3 =
1

6

∂3yi

∂xj1∂xj2∂xj3
xj1,1xj2,1xj3,1 +

∂2yi

∂xj1∂xj2
xj1,2xj2,1 +

∂2yi

∂xj1
xj1,3,

∂yi,1

∂xj,1
=

∂yi

∂xj
,

∂yi,3

∂xj,2
=

∂2yi

∂xj∂xj2
xj2,1 =

∂

∂xj

(
∂yi

∂xj2
xj2,1

)
=

∂yi,1

∂xj
,

∂yi,3

∂xj,1
=

1

2

∂3yi

∂xj1∂xj2∂xj
xj1,1xj2,1 +

∂2yi

∂xj1∂xj
xj1,2 =

∂yi,2

∂xj
.



• The Jacobian matrix for the coordinate change from {xj,l}

to {yi,k} has a special upper triangular shape:

A =




A0 0 0 0 0 · · ·
A1 A0 0 0 0 · · ·
A2 A1 A0 0 0 · · ·
A3 A2 A1 A0 0 · · ·
· · · · · · · · · · · · · · · · · ·




• We will study formal path space based on this fact.



Recursion relations among Cµ

• The coefficients Cµ are some constants which depend only

on the partition µ.

• Define the following operator on Z[p1, p2, . . . ]:

A = p1 +
∞∑

i=1

pi+1
∂

∂pi
.

• Ak1 =
∑
|µ|=k Cµpµ, where pµ = pµ1 · · · pµl(µ).



• For m > 0, define

A−m =
1

Γ(m)
pm +

∞∑

l=1

Γ(l + 1)

Γ(l + m)
pl+m∂pl.

In particular, A−1 = A.

• For m ≥ 0, define

Am =
∞∑

l=1

Γ(l + m + 1)

Γ(l)
pl∂pl+m.

• Clearly Am1 = 0 for m ≥ 0.



Lemma 1 The operators {Am}m≥−1 span half of the Virasoro

algebra with central charge 0:

[Am, Am′] = (m−m′)Am+m′,

for m, m′ ≥ −1, or m, m′ < 0.

Lemma 2 For k, m ≥ 1 we have

AmAk−11 = k(k − 1) · · · (k −m)Ak−m
−1 1.



• The above two Lemmas yield the following recursion rela-

tions:

k(k − 1) · · · (k − a)C(1m12m2··· )

=
∑

l≥1

Γ(l + a + 1)

Γ(l)
(ml+a + 1)C

(1m1···lml−1···(l+a)ml+a+1··· ).



Combined with

f(k) =
∑

|µ|=k

Cµ
∑

1≤j1,...,jl(µ)≤n

∂l(µ)f

∂xj1 · · · ∂xjl(µ)
· 1(

k
µ

)xj1,µ1 · · ·xjl(µ),µl(µ),

one gets:

Corollary 1 We have

n∑

j=1

∞∑

l=1

lxj,l
∂f(k)

∂xj,l+a
= (k − a)f(k−a).



The method can be generalized to get simpler relations.

We use

[∂pl, A−1] =




1, l = 1,

∂pl−1, l > 1

and induction to get the following

Lemma 3 For k ≥ l ≥ 1 we have

∂plA
k−11 =

(
k
l

)
Ak−l
−1 1.



• The above Lemma yields:

(
k
l

)
C(1m12m2··· ) = (ml + 1)C

(1m12m2···lml+1··· ),

where
∑

i imi = k − l.

• Combined with

f(k) =
∑

|µ|=k

Cµ
∑

1≤j1,...,jl(µ)≤n

∂l(µ)f

∂xj1 · · · ∂xjl(µ)
· 1(

k
µ

)xj1,µ1 · · ·xjl(µ),µl(µ),

one gets:

∂f(k)

∂xj,l
=

∂f(k−l)

∂xj
.



• In particular, ∂yi,k

∂xj,l = ∂yi,k−l

∂xi .

• This means the Jacobian matrix for the coordinate change

from {xj,l} to {yi,k} has a special upper triangular shape:

A =




A0 0 0 0 0 · · ·
A1 A0 0 0 0 · · ·
A2 A1 A0 0 0 · · ·
A3 A2 A1 A0 0 · · ·
· · · · · · · · · · · · · · · · · ·




• This means TPM and TP∗M are filtered vector bundles.



Filtered vector spaces

• Let V be a vector space over a field k.

• A forward filtration of V we mean a sequence of linear sub-

spaces

0 = V −1 ⊂ V 0 ⊂ V 1 ⊂ · · ·

such that for any v ∈ V , there exists some n ≥ 0 such that v ∈

V n and for each n ≥ 0, Wn := V n/V n−1 is finite-dimensional.



• The graded vector space

Gr∗V :=
∞⊕

n=0

V n/V n−1

will be called the graded vector space associated with V .

• Example, T ∗PM is a forward filtered vector bundle, with

GrnT ∗PM ∼= T ∗M for each n ≥ 0.



• Dually, a backward filtration of V is a sequence of linear

subspaces

V = V0 ⊃ V1 ⊃ · · ·

such that for any v ∈ V , there exists some n ≥ 0 such that v /∈

Vn and for each n ≥ 0, Wn := Vn/Vn+1 is finite-dimensional.



• The graded vector space

Gr∗V :=
∞⊕

n=0

Vn/Vn+1

will be called the graded vector space associated with V .

• Example, TPM is a backward filtered vector bundle, with

GrnTPM ∼= TM for each n ≥ 0.



Ring of functions on PM

• Denote by A(PM) the space of functions on PM which can

be locally written as

f = fi1,k1;...,il,kl
(x1, . . . , xn) · xi1,k1 · · ·xil,kl,

where the coefficients are smooth functions in x1, . . . , xn,

k1 . . . , kl ≥ 1.



• Define the conformal weight of f by

degf := k1 + · · ·+ kl.

• This is independent of the choices of local coordinates {xi}.

• Denote by Ak(PM) the subspace of A(PM) of elements of

conformal weight k.



An order on local generators of Ak(PM)

• Locally, Ak(PU) is generated over C∞(U) by

xJ,µ := xj1,µ1 · · ·xjl,µl,

where µ = (µ1, . . . , µl) are partitions of k,

J = (j1, . . . , jl) is a multiple index.



• Monomials with the same partition µ have the same order.

The order of xJ,µ is small than xK,ν if µ < ν.

• We use the reverse lexicographic order for partitions: µ < ν

if the first nonzero µi − νi is negative.



Filtered vector bundles associated with A(PM)

Proposition 1 The space Ak(PM) is isomorphic to the space of

sections to a forward filtered vector bundle Vk on M , which has lo-

cal forward filtered frame consisting of monomials xj1,µ1 · · ·xjl,µl,

listed in the reverse lexicographic order of partitions µ of k. Fur-

thermore,

GrµVk
∼=

⊗

i≥1

Smi(µ)T ∗M.



• As a consequence, we get:

∞∑

k=0

qkVk =
∞⊗

i=1

SqiT
∗M.

• The index of the Dirac operator twisted by
⊗∞

i=1 SqiT ∗M ap-

peared in the study of elliptic genus.



Examples

For k = 2,

yi1,1yi2,1 =
∂yi1

∂xj1

∂yi2

∂xj2
· xj1,1xj2,1,

yi,2 =
1

2

∂2yi

∂xj1∂xj2
· xj1,1xj2,1 +

∂yi

∂xj
xj,2,

Gr(1,1)V2
∼= S2T ∗M , Gr(2)V2

∼= S1T ∗M .



Examples

For k = 3,

yi1,1yi2,1yi3,1 =
∂yi1

∂xj1

∂yi2

∂xj2

∂yi3

∂xj3
· xj1,1xj2,1xj3,1,

yi1,2yi3,1 =
1

2

∂2yi1

∂xj1∂xj2

∂yi3

∂xj3
· xj1,1xj2,1xj3,1 +

∂yi1

∂xj

∂yi3

∂xj3
· xj1,2xj3,1,

yi,3 =
1

6

∂2yi

∂xj1∂xj2∂xj3
xj1,1xj2,1xj3,1 +

∂2yi

∂xj1∂xj2
xj1,2xj2,1 +

∂2yi

∂xj1
xj1,3,

Gr(1,1,1)V3
∼= S3T ∗M , Gr(2)V3

∼= S1T ∗M ⊗ S1T ∗M , Gr(3)V3
∼=

S1T ∗M .



Generalized Euler vector fields

• Define the generalized Euller vector fields on PM by:

Ea =
n∑

j=1

∞∑

l=1

lxj,l∂xj,l+a.

• The vector fields Ea are independent of the choice of local

coordinates on M only for a ≥ −1.



• Virasoro type algebra (a, b ≥ −1):

[Ea, Eb] = (a− b)Ea+b.

• The conformal weight of f ∈ A(PM) can be defined by:

E0f = hf.



Differential forms on PM

• A differential form on PU is a finite sum of the form:

ω = ωi1,k1;...;ip,kpdxi1,k1 ∧ · · · ∧ dxip,kp,

where 1 ≤ i1, . . . , ip ≤ dimM ,

k1, . . . , kp ≥ 0,

ωi1,k1;...;ip,kp ∈ A(PU).



Fermionic charge and conformal weight of ω

They are defined by the following rules:

• Each xi,k has fermionic degree 0 and conformal weight k.

• Each dxi,k has fermionic degree 1 and conformal weight 1
2+k.



• We have the following table:

xi,k dxi,k

c 0 1
h k k + 1/2



BPS inequality

• The following inequality is satisfied:

h(ω) ≥ 1

2
c(ω).

• The equality holds if and only if

ω = ωi1,...,ip(x
1, . . . , xn)dxi1 ∧ · · · ∧ dxip ∈ Ω∗(U).

• This explains our definition of the conformal weights.



Filtered vector bundles on M associated with Ω(PM)

• Denote by Ωc,r(PM) the space of forms on PM with fermionic

charge c and conformal weight r.

• Ωc,r(PM) is isomorphic to the space of sections to a smooth

vector bundle Vc,r on M .

• Vc,r has natural filtrations.



Example

Ω1,5/2(PM) is locally generated by:

{xj1,1xj2,1dxj3,0, xj1,2dxj1,0, xj1,1dxj2,1, dxj1,2}.



They transform as follows:

yi1,1yi2,1dyi3,0 =
∂yi1

∂xj1

∂yi2

∂xj2

∂yi3

∂xj3
xj1,1xj2,1dxj3,0,

yi1,2dx̃i2,0 =
1

2

∂2yi1

∂xj1∂xj2

∂yi2

∂xj3
· xj1,1xj2,1dxj3,0 +

∂yi1

∂xj1

∂yi2

∂xj2
· xj1,2dxj1,0,

yi1,1dyi2,1 =
∂yi1

∂xj1

∂2yi2

∂xj2∂xj3
xj1,1xj2,1dxj3,0 +

∂yi1

∂xj1

∂yi2

∂xj2
dxj2,1,

dyi1,2 =
1

2

∂3yi

∂xj0∂xj1∂xj2
xj1,1xj2,1dxj0,0 +

∂2yi

∂xj1∂xj2
xj1,1dxj2,1

+
∂2yi

∂xj1∂xj2
xj1,2dxj2,0 +

∂yi

∂xj1
dxj1,2.



Hence V1,5/2(M) has a forward filtration with

Gr0V1,5/2(M) ∼= S2T ∗M ⊗ Λ1T ∗M,

Gr1V1,5/2(M) ∼= S1T ∗M ⊗ Λ1T ∗M,

Gr2V1,5/2(M) ∼= S1T ∗M ⊗ Λ1T ∗M,

Gr3V1,5/2(M) ∼= Λ1T ∗M.



As a smooth vector bundle,

Vc,r(M) ∼=
⊕

(mi)i≥1,(ni)i≥0

(⊗

i≥1

SmiT ∗M ⊗
⊗

i≥0

ΛniT ∗M
)

,

where
∑

i≥0 ni = c,
∑

i≥1 imi +
∑

i≥0 ni(i +
1
2) = r.

We have in K(M)[[y, q]]:

∑
c,r

(−y)cqrVc,r(M, E) =
⊗

i≥1

(
Λ−yqi−1/2T

∗M ⊗ SqiT
∗M

)
.



The exterior differential operator on PM

• Define the exterior differential d : Ω(PM) → Ω(PM) as in

the finite-dimensional case:

d = dxi,k ∧ ∂xi,k.

• It is independent of the choices of local coordinates {xi}.



• d increase the fermionic charge by 1, and increase the con-

formal weight by 1
2.

•

d2 = 0,

d(ω1 ∧ ω2) = dω1 ∧ ω2 + (−1)|ω1|ω1 ∧ dω2.



De Rham cohomology of PM

• This is just the cohomology of the differential graded algebra

(Ω∗(PM),∧, d).

Theorem 1 The inclusion map Ω(M) → Ω(PM) is a quasi-

isomorphism. I.e., it induces an isomorphism of the cohomology

groups.



The proof

We use the standard argument by a homotopy operator.

Lemma 4 We have the following formula for the Lie derivatives

of the generalized Euler vector fields Ea on Ω(PM):

LEa = [d, iEa] =
n∑

j=1

∞∑

l=1

ldxj,l ∧ i∂
xj,l+a

+
n∑

j=1

∞∑

l=1

lxj,l · ∂xj,l+a.



• We use L0 to prove the Theorem.

• The eigenvalues of L0 are ≥ 0.

• Zero eigenforms are just forms on M .

• Because L0 commutes with d, one can restrict to eigenspaces

of L0.



Other operators on the spaces of forms on PM

For a ≥ 0, define

• La = LEa =
∑n

j=1
∑∞

l=1 ldxj,l ∧ i∂
xj,l+a

+
∑n

j=1
∑∞

l=1 lxj,l · ∂xj,l+a

• Qa = dxj,l ∧ ∂xj,l+a

• Ja = dxj,l ∧ i∂
xj,l+a



• In particular, Q0 = d, and the eigenvalues of J0 are the

fermionic charge.

• La, Qa and Ja are independent of the choices of local coor-

dinates {xi}.



Lie algebra generated by such operators

[Qa, Qb]+ = 0,

[Ja, Jb] = 0,

[La, Lb] = (a− b)La+b,

[La, Qb] = −bQa+b,

[La, Jb] = −bJa+b,

[Ja, Qb] = Qa+b.



Twisted algebra

We can also consider operators L±a = La ± 1
2(a + 1)Ja. Then we

have

[L±a , L±b ] = (a− b)L±a+b,

[L±a , Qb] = −(b∓ 1

2
(a + 1))Qa+b,

[L±a , Jb] = −bJa+b.



Other geometric objects studied in this framework:

1. Path bundles

2. Path connections

3. Characteristic classes of path bundles

4. Mathai-Quillen constructions for path bundles



More geometric objects to be studied:

1. Induced Riemannian metrics on formal path spaces

2. Induced symplectic structures

3. Dirac operators, etc.



Thank you very much!


