INVOLUTIVE RATIONAL NORMAL STRUCTURES

ROBERT L. BRYANT

MATHEMATICAL SCIENCES RESEARCH INSTITUTE

MAY 12, 2009

Moduli spaces: Let X be a complex manifold. When $C \subset X$ is a compact complex submanifold, results of Kodaira show that there is a complexanalytic 'moduli space' M consisting of the 'deformations' of C and whose tangent cone at C is

$$
T_{C} M \simeq H^{0}(C, \nu) \quad \text { where } \quad \nu=C^{*}(T X) / T C .
$$

Moreover, when $H^{1}(C, \nu)=0$, the space M is smooth at C.

Moduli spaces: Let X be a complex manifold. When $C \subset X$ is a compact complex submanifold, results of Kodaira show that there is a complexanalytic 'moduli space' M consisting of the 'deformations' of C and whose tangent cone at C is

$$
T_{C} M \simeq H^{0}(C, \nu) \quad \text { where } \quad \nu=C^{*}(T X) / T C .
$$

Moreover, when $H^{1}(C, \nu)=0$, the space M is smooth at C.
Moduli of Rational curves: When $C=\mathbb{P}^{1}$, and $\operatorname{dim} X=n+1$, one has

$$
\nu \simeq \mathcal{O}\left(k_{1}\right) \oplus \mathcal{O}\left(k_{2}\right) \oplus \cdots \oplus \mathcal{O}\left(k_{n}\right)
$$

so that, when $k_{i} \geq 0$, one has a (non-canonical) isomorphism

$$
H^{0}(C, \nu) \simeq \mathrm{S}^{k_{1}}\left(\mathbb{C}^{2}\right) \oplus \mathrm{S}^{k_{2}}\left(\mathbb{C}^{2}\right) \oplus \cdots \mathrm{S}^{k_{n}}\left(\mathbb{C}^{2}\right)
$$

Moreover, when $k_{i} \geq-1$ for all i, one has $H^{1}(C, \nu)=0$ as well.

Moduli spaces: Let X be a complex manifold. When $C \subset X$ is a compact complex submanifold, results of Kodaira show that there is a complexanalytic 'moduli space' M consisting of the 'deformations' of C and whose tangent cone at C is

$$
T_{C} M \simeq H^{0}(C, \nu) \quad \text { where } \quad \nu=C^{*}(T X) / T C .
$$

Moreover, when $H^{1}(C, \nu)=0$, the space M is smooth at C.
Moduli of Rational curves: When $C=\mathbb{P}^{1}$, and $\operatorname{dim} X=n+1$, one has

$$
\nu \simeq \mathcal{O}\left(k_{1}\right) \oplus \mathcal{O}\left(k_{2}\right) \oplus \cdots \oplus \mathcal{O}\left(k_{n}\right)
$$

so that, when $k_{i} \geq 0$, one has a (non-canonical) isomorphism

$$
H^{0}(C, \nu) \simeq \mathrm{S}^{k_{1}}\left(\mathbb{C}^{2}\right) \oplus \mathrm{S}^{k_{2}}\left(\mathbb{C}^{2}\right) \oplus \cdots \mathrm{S}^{k_{n}}\left(\mathbb{C}^{2}\right)
$$

Moreover, when $k_{i} \geq-1$ for all i, one has $H^{1}(C, \nu)=0$ as well.
In particular, $T_{C} M$ carries some extra structure as a vector space, which implies that M carries some extra structure as a complex manifold.

Moduli spaces: Let X be a complex manifold. When $C \subset X$ is a compact complex submanifold, results of Kodaira show that there is a complexanalytic 'moduli space' M consisting of the 'deformations' of C and whose tangent cone at C is

$$
T_{C} M \simeq H^{0}(C, \nu) \quad \text { where } \quad \nu=C^{*}(T X) / T C .
$$

Moreover, when $H^{1}(C, \nu)=0$, the space M is smooth at C.
Moduli of Rational curves: When $C=\mathbb{P}^{1}$, and $\operatorname{dim} X=n+1$, one has

$$
\nu \simeq \mathcal{O}\left(k_{1}\right) \oplus \mathcal{O}\left(k_{2}\right) \oplus \cdots \oplus \mathcal{O}\left(k_{n}\right)
$$

so that, when $k_{i} \geq 0$, one has a (non-canonical) isomorphism

$$
H^{0}(C, \nu) \simeq \mathrm{S}^{k_{1}}\left(\mathbb{C}^{2}\right) \oplus \mathrm{S}^{k_{2}}\left(\mathbb{C}^{2}\right) \oplus \cdots \mathrm{S}^{k_{n}}\left(\mathbb{C}^{2}\right)
$$

Moreover, when $k_{i} \geq-1$ for all i, one has $H^{1}(C, \nu)=0$ as well.
In particular, $T_{C} M$ carries some extra structure as a vector space, which implies that M carries some extra structure as a complex manifold.

This idea has been exploited by R. Penrose (and, since, many others) to construct examples of manifolds M endowed with special structures.

Example: (Penrose) When $\nu \simeq \mathcal{O}(1) \oplus \mathcal{O}(1)$, the space M has dimension 4 and its tangent spaces carry a structure of the form

$$
T_{P} M \simeq \mathbb{C}^{2} \otimes H^{0}(P, \mathcal{O}(1))
$$

which allows one to define a conformal structure on M that turns out to be half-flat.

Example: (Penrose) When $\nu \simeq \mathcal{O}(1) \oplus \mathcal{O}(1)$, the space M has dimension 4 and its tangent spaces carry a structure of the form

$$
T_{P} M \simeq \mathbb{C}^{2} \otimes H^{0}(P, \mathcal{O}(1))
$$

which allows one to define a conformal structure on M that turns out to be half-flat.

A specific example is when C is a line in \mathbb{P}^{3}, so that $M=\operatorname{Gr}\left(2, \mathbb{C}^{4}\right)$.
Deformations of an open neighborhood X of C in \mathbb{P}^{3} give rise to conformal structures that are only half-flat.

Example: (Penrose) When $\nu \simeq \mathcal{O}(1) \oplus \mathcal{O}(1)$, the space M has dimension 4 and its tangent spaces carry a structure of the form

$$
T_{P} M \simeq \mathbb{C}^{2} \otimes H^{0}(P, \mathcal{O}(1))
$$

which allows one to define a conformal structure on M that turns out to be half-flat.

A specific example is when C is a line in \mathbb{P}^{3}, so that $M=\operatorname{Gr}\left(2, \mathbb{C}^{4}\right)$.
Deformations of an open neighborhood X of C in \mathbb{P}^{3} give rise to conformal structures that are only half-flat.

Example: When $\nu \simeq \mathcal{O}(n)$, the space M has dimension $n+1$ and its tangent spaces carry a structure of the form

$$
T_{P} M=H^{0}\left(P, \nu_{P}\right) \simeq H^{0}(P, \mathcal{O}(n)) \simeq \mathrm{S}^{n}\left(H^{0}(P, \mathcal{O}(1))\right) \simeq \mathrm{S}^{n}\left(\mathbb{C}^{2}\right)
$$

Example: (Penrose) When $\nu \simeq \mathcal{O}(1) \oplus \mathcal{O}(1)$, the space M has dimension 4 and its tangent spaces carry a structure of the form

$$
T_{P} M \simeq \mathbb{C}^{2} \otimes H^{0}(P, \mathcal{O}(1))
$$

which allows one to define a conformal structure on M that turns out to be half-flat.

A specific example is when C is a line in \mathbb{P}^{3}, so that $M=\operatorname{Gr}\left(2, \mathbb{C}^{4}\right)$.
Deformations of an open neighborhood X of C in \mathbb{P}^{3} give rise to conformal structures that are only half-flat.

Example: When $\nu \simeq \mathcal{O}(n)$, the space M has dimension $n+1$ and its tangent spaces carry a structure of the form

$$
T_{P} M=H^{0}\left(P, \nu_{P}\right) \simeq H^{0}(P, \mathcal{O}(n)) \simeq \mathrm{S}^{n}\left(H^{0}(P, \mathcal{O}(1))\right) \simeq \mathrm{S}^{n}\left(\mathbb{C}^{2}\right)
$$

In particular, each $\mathbb{P}\left(T_{P} M\right)$ contains a rational normal curve

$$
Z_{P} \subset \mathbb{P}\left(T_{P} M\right)
$$

that consists of the (projectivized) pure n-th powers in $\mathrm{S}^{n}\left(\mathbb{C}^{2}\right)$.

Definitions: A rational normal structure (RNS) on a manifold M^{n+1} is a subbundle

$$
Z \subset \mathbb{P}(T M)
$$

of dimension $n+2$ such that each fiber $Z_{x}=Z \cap \mathbb{P}\left(T_{x} M\right)$ is a rational normal curve in $\mathbb{P}\left(T_{x} M\right) \simeq \mathbb{P}^{n}$.

Definitions: A rational normal structure (RNS) on a manifold M^{n+1} is a subbundle

$$
Z \subset \mathbb{P}(T M)
$$

of dimension $n+2$ such that each fiber $Z_{x}=Z \cap \mathbb{P}\left(T_{x} M\right)$ is a rational normal curve in $\mathbb{P}\left(T_{x} M\right) \simeq \mathbb{P}^{n}$.

The dual structure of an $\mathrm{RNS} Z \subset \mathbb{P}(T M)$ is the subbundle

$$
Z^{*} \subset \mathbb{P}\left(T^{*} M\right)
$$

that consists of the union of the $Z_{x}{ }^{*} \subset \mathbb{P}\left(T_{x}^{*} M\right)$, where $Z_{x}{ }^{*}$ is the dual curve to Z_{x}.

Definitions: A rational normal structure (RNS) on a manifold M^{n+1} is a subbundle

$$
Z \subset \mathbb{P}(T M)
$$

of dimension $n+2$ such that each fiber $Z_{x}=Z \cap \mathbb{P}\left(T_{x} M\right)$ is a rational normal curve in $\mathbb{P}\left(T_{x} M\right) \simeq \mathbb{P}^{n}$.

The dual structure of an $\mathrm{RNS} Z \subset \mathbb{P}(T M)$ is the subbundle

$$
Z^{*} \subset \mathbb{P}\left(T^{*} M\right)
$$

that consists of the union of the $Z_{x}{ }^{*} \subset \mathbb{P}\left(T_{x}^{*} M\right)$, where $Z_{x}{ }^{*}$ is the dual curve to Z_{x}.

The coframe bundle of Z is the bundle B consisting of isomorphisms

$$
u: T_{x} M \rightarrow \mathrm{~S}^{n}\left(\mathbb{C}^{2}\right)
$$

such that $[u]\left(Z_{x}\right)$ is the curve of pure n-th powers in $\mathbb{P}\left(S^{n}\left(\mathbb{C}^{2}\right)\right)$.

Definitions: A rational normal structure (RNS) on a manifold M^{n+1} is a subbundle

$$
Z \subset \mathbb{P}(T M)
$$

of dimension $n+2$ such that each fiber $Z_{x}=Z \cap \mathbb{P}\left(T_{x} M\right)$ is a rational normal curve in $\mathbb{P}\left(T_{x} M\right) \simeq \mathbb{P}^{n}$.

The dual structure of an $\mathrm{RNS} Z \subset \mathbb{P}(T M)$ is the subbundle

$$
Z^{*} \subset \mathbb{P}\left(T^{*} M\right)
$$

that consists of the union of the $Z_{x}{ }^{*} \subset \mathbb{P}\left(T_{x}^{*} M\right)$, where $Z_{x}{ }^{*}$ is the dual curve to Z_{x}.

The coframe bundle of Z is the bundle B consisting of isomorphisms

$$
u: T_{x} M \rightarrow \mathrm{~S}^{n}\left(\mathbb{C}^{2}\right)
$$

such that $[u]\left(Z_{x}\right)$ is the curve of pure n-th powers in $\mathbb{P}\left(S^{n}\left(\mathbb{C}^{2}\right)\right)$.
There is a corresponding notion of real rational normal structure in the smooth category, where \mathbb{C} is replaced by \mathbb{R} everywhere.

When $n=1$, dimension count alone gives $Z=\mathbb{P}(T M)$, so there is only one RNS and it provides no extra structure.

When $n=1$, dimension count alone gives $Z=\mathbb{P}(T M)$, so there is only one RNS and it provides no extra structure.

When $n=2$, a rational normal curve $Z_{x} \subset \mathbb{P}\left(T_{x} M\right)$ is simply a nonsingular conic, and the choice of an $\mathrm{RNS} Z \subset \mathbb{P}(T M)$ corresponds exactly to a choice of conformal structure on M, namely, the one for which Z consists of the null directions. (In the real category, such a conformal structure is Lorentzian.)

When $n=1$, dimension count alone gives $Z=\mathbb{P}(T M)$, so there is only one RNS and it provides no extra structure.

When $n=2$, a rational normal curve $Z_{x} \subset \mathbb{P}\left(T_{x} M\right)$ is simply a nonsingular conic, and the choice of an $\operatorname{RNS} Z \subset \mathbb{P}(T M)$ corresponds exactly to a choice of conformal structure on M, namely, the one for which Z consists of the null directions. (In the real category, such a conformal structure is Lorentzian.)

When $n>2$, an RNS does not correspond to a well-studied structure. However, an RNS $Z \subset \mathbb{P}(T M)$ is equivalent to the choice of a G_{n}-structure on M, where

$$
G_{n} \subset \mathrm{GL}\left(\mathrm{~S}^{n}\left(\mathbb{C}^{2}\right)\right) \simeq \mathrm{GL}(n+1, \mathbb{C})
$$

is the group of linear transformations that preserves the cone of pure n th powers, which is isomorphic to the quotient of $\mathrm{GL}(2, \mathbb{C})$ by its central cyclic subgroup of order n. Thus, an RNS is a choice of a section of the bundle $F / G_{n} \rightarrow M$, whose fibers are the homogeneous spaces $\operatorname{GL}(n+1, \mathbb{C}) / G_{n}$.

Some numerology:

The general G_{n}-structure on $M=\mathbb{C}^{n+1}$ depends (locally, in the sense of germs) on

$$
(n+1)^{2}-4=(n-1)(n+3)
$$

functions of $(n+1)$ variables.

Some numerology:

The general G_{n}-structure on $M=\mathbb{C}^{n+1}$ depends (locally, in the sense of germs) on

$$
(n+1)^{2}-4=(n-1)(n+3)
$$

functions of $(n+1)$ variables.
When $n>1$, the automorphism group of such a structure is always finite-dimensional, so, after reducing modulo diffeomorphisms, the general such structure depends on

$$
n^{2}+n-4>0
$$

functions of $(n+1)$ variables.

Some numerology:

The general G_{n}-structure on $M=\mathbb{C}^{n+1}$ depends (locally, in the sense of germs) on

$$
(n+1)^{2}-4=(n-1)(n+3)
$$

functions of $(n+1)$ variables.
When $n>1$, the automorphism group of such a structure is always finite-dimensional, so, after reducing modulo diffeomorphisms, the general such structure depends on

$$
n^{2}+n-4>0
$$

functions of $(n+1)$ variables.
However, it can be argued that the moduli of neighborhoods of a rational curve in a surface with normal bundle $\mathcal{O}(n)$ depends only on functions of 2 variables, so the general RNS cannot arise from such a moduli space.

Some numerology:

The general G_{n}-structure on $M=\mathbb{C}^{n+1}$ depends (locally, in the sense of germs) on

$$
(n+1)^{2}-4=(n-1)(n+3)
$$

functions of $(n+1)$ variables.
When $n>1$, the automorphism group of such a structure is always finite-dimensional, so, after reducing modulo diffeomorphisms, the general such structure depends on

$$
n^{2}+n-4>0
$$

functions of $(n+1)$ variables.
However, it can be argued that the moduli of neighborhoods of a rational curve in a surface with normal bundle $\mathcal{O}(n)$ depends only on functions of 2 variables, so the general RNS cannot arise from such a moduli space.

This raises the question of characterizing those RNSs that arise from such moduli spaces in terms of differential-geometric invariants of the RNS.

The case $n=2$ was investigated thoroughly by Hitchin, making use of earlier work by É. Cartan and this was well-understood as a manifestation of Einstein-Weyl geometry by the mid 1980's.

The case $n=2$ was investigated thoroughly by Hitchin, making use of earlier work by É. Cartan and this was well-understood as a manifestation of Einstein-Weyl geometry by the mid 1980's.

In 1987, I decided to look at the case $n=3$ and found something that, at the time, seemed astonishing:

The case $n=2$ was investigated thoroughly by Hitchin, making use of earlier work by É. Cartan and this was well-understood as a manifestation of Einstein-Weyl geometry by the mid 1980's.

In 1987, I decided to look at the case $n=3$ and found something that, at the time, seemed astonishing:

If one takes X to be $\mathbb{C P}^{2}$ with one point p blown up and lets C be a conic in $\mathbb{C P}^{2}$ that passes through p, then M has dimension 4 , the induced $G_{3^{-}}$ structure on M has a (unique) torsion-free connection, and this connection has irreducibly acting holonomy

$$
H_{3}=G_{3} \cap \mathrm{SL}(4, \mathbb{C}) \simeq \mathrm{SL}(2, C) / \mathbb{Z}_{3},
$$

even though this group does not appear on Berger's classic list of the irreducible affine holonomies of torsion-free connections!

The case $n=2$ was investigated thoroughly by Hitchin, making use of earlier work by É. Cartan and this was well-understood as a manifestation of Einstein-Weyl geometry by the mid 1980's.

In 1987, I decided to look at the case $n=3$ and found something that, at the time, seemed astonishing:

If one takes X to be $\mathbb{C P}^{2}$ with one point p blown up and lets C be a conic in $\mathbb{C P}^{2}$ that passes through p, then M has dimension 4 , the induced $G_{3^{-}}$ structure on M has a (unique) torsion-free connection, and this connection has irreducibly acting holonomy

$$
H_{3}=G_{3} \cap \mathrm{SL}(4, \mathbb{C}) \simeq \mathrm{SL}(2, C) / \mathbb{Z}_{3},
$$

even though this group does not appear on Berger's classic list of the irreducible affine holonomies of torsion-free connections!

This suggested the problem of determining the generality of torsion-free G_{3}-structures in dimension 4.

The case $n=2$ was investigated thoroughly by Hitchin, making use of earlier work by É. Cartan and this was well-understood as a manifestation of Einstein-Weyl geometry by the mid 1980's.

In 1987, I decided to look at the case $n=3$ and found something that, at the time, seemed astonishing:

If one takes X to be $\mathbb{C P}^{2}$ with one point p blown up and lets C be a conic in $\mathbb{C P}^{2}$ that passes through p, then M has dimension 4 , the induced $G_{3^{-}}$ structure on M has a (unique) torsion-free connection, and this connection has irreducibly acting holonomy

$$
H_{3}=G_{3} \cap \mathrm{SL}(4, \mathbb{C}) \simeq \mathrm{SL}(2, C) / \mathbb{Z}_{3},
$$

even though this group does not appear on Berger's classic list of the irreducible affine holonomies of torsion-free connections!

This suggested the problem of determining the generality of torsion-free G_{3}-structures in dimension 4. I showed that, modulo diffeomorphisms, the torsion-free G_{3}-structures depend (locally, in the sense of germs), on 4 functions of 3 variables.

Now, it is easy to show that the general RNS that arises from a rational curve C on a surface S with $\nu \simeq \mathcal{O}(3)$ comes from a G_{3}-structure that is torsion-free.

Now, it is easy to show that the general RNS that arises from a rational curve C on a surface S with $\nu \simeq \mathcal{O}(3)$ comes from a G_{3}-structure that is torsion-free.

However, the function count argues that this condition cannot be enough to characterize such RNS, so not every torsion-free RNS in dimension 4 can arise this way.

Now, it is easy to show that the general RNS that arises from a rational curve C on a surface S with $\nu \simeq \mathcal{O}(3)$ comes from a G_{3}-structure that is torsion-free.

However, the function count argues that this condition cannot be enough to characterize such RNS, so not every torsion-free RNS in dimension 4 can arise this way.

Moreover, the 'mismatch' gets worse as n increases:

Now, it is easy to show that the general RNS that arises from a rational curve C on a surface S with $\nu \simeq \mathcal{O}(3)$ comes from a G_{3}-structure that is torsion-free.

However, the function count argues that this condition cannot be enough to characterize such RNS, so not every torsion-free RNS in dimension 4 can arise this way.

Moreover, the 'mismatch' gets worse as n increases:
When $n=4$, there are only two distinct torsion-free G_{4}-structures in dimension 5 and they are both symmetric spaces, while, when $n>4$, there is (up to diffeomorphism) only one torsion-free G_{n}-structure in dimension $n+1$, namely, the flat one.

Now, it is easy to show that the general RNS that arises from a rational curve C on a surface S with $\nu \simeq \mathcal{O}(3)$ comes from a G_{3}-structure that is torsion-free.

However, the function count argues that this condition cannot be enough to characterize such RNS, so not every torsion-free RNS in dimension 4 can arise this way.

Moreover, the 'mismatch' gets worse as n increases:
When $n=4$, there are only two distinct torsion-free G_{4}-structures in dimension 5 and they are both symmetric spaces, while, when $n>4$, there is (up to diffeomorphism) only one torsion-free G_{n}-structure in dimension $n+1$, namely, the flat one.

Meanwhile, there are many inequivalent RNSs that come from the moduli space M^{n+1} of a rational curve C on a surface S with $\nu \simeq \mathcal{O}(n)$.

Now, it is easy to show that the general RNS that arises from a rational curve C on a surface S with $\nu \simeq \mathcal{O}(3)$ comes from a G_{3}-structure that is torsion-free.

However, the function count argues that this condition cannot be enough to characterize such RNS, so not every torsion-free RNS in dimension 4 can arise this way.

Moreover, the 'mismatch' gets worse as n increases:
When $n=4$, there are only two distinct torsion-free G_{4}-structures in dimension 5 and they are both symmetric spaces, while, when $n>4$, there is (up to diffeomorphism) only one torsion-free G_{n}-structure in dimension $n+1$, namely, the flat one.

Meanwhile, there are many inequivalent RNSs that come from the moduli space M^{n+1} of a rational curve C on a surface S with $\nu \simeq \mathcal{O}(n)$.

It turns out that there is a twistor-theoretic construction of the general torsion-free G_{3}-structure, but it involves a different kind of moduli space.

Moduli of rational contact curves: Suppose that X is a holomorphic contact 3 -fold, with contact line bundle $L \subset T^{*} X$ and let $C \subset X$ be an embedded rational curve that is contact (aka Legendrian) and suppose that $n \geq 1$ is such that

$$
C^{*}\left(L^{*}\right) \simeq \mathcal{O}(n)
$$

Moduli of rational contact curves: Suppose that X is a holomorphic contact 3 -fold, with contact line bundle $L \subset T^{*} X$ and let $C \subset X$ be an embedded rational curve that is contact (aka Legendrian) and suppose that $n \geq 1$ is such that

$$
C^{*}\left(L^{*}\right) \simeq \mathcal{O}(n)
$$

Then it can be shown that $\nu \simeq \mathcal{O}(n-1) \oplus \mathcal{O}(n-1)$.

Moduli of rational contact curves: Suppose that X is a holomorphic contact 3 -fold, with contact line bundle $L \subset T^{*} X$ and let $C \subset X$ be an embedded rational curve that is contact (aka Legendrian) and suppose that $n \geq 1$ is such that

$$
C^{*}\left(L^{*}\right) \simeq \mathcal{O}(n)
$$

Then it can be shown that $\nu \simeq \mathcal{O}(n-1) \oplus \mathcal{O}(n-1)$.
Moreover, not only is M smooth and of dimension $2 n$ near C, but the subset

$$
Y=\left\{P \in M \mid P \text { is contact and } P^{*}\left(L^{*}\right) \simeq \mathcal{O}(n)\right\}
$$

is a smooth subvariety of dimension $n+1$, such that, for all $P \in Y$,

$$
T_{P} Y=H^{0}\left(P, P^{*}\left(L^{*}\right)\right) \simeq H^{0}(P, \mathcal{O}(n)) \simeq \mathrm{S}^{n}\left(\mathbb{C}^{2}\right)
$$

Moduli of rational contact curves: Suppose that X is a holomorphic contact 3 -fold, with contact line bundle $L \subset T^{*} X$ and let $C \subset X$ be an embedded rational curve that is contact (aka Legendrian) and suppose that $n \geq 1$ is such that

$$
C^{*}\left(L^{*}\right) \simeq \mathcal{O}(n)
$$

Then it can be shown that $\nu \simeq \mathcal{O}(n-1) \oplus \mathcal{O}(n-1)$.
Moreover, not only is M smooth and of dimension $2 n$ near C, but the subset

$$
Y=\left\{P \in M \mid P \text { is contact and } P^{*}\left(L^{*}\right) \simeq \mathcal{O}(n)\right\}
$$

is a smooth subvariety of dimension $n+1$, such that, for all $P \in Y$,

$$
T_{P} Y=H^{0}\left(P, P^{*}\left(L^{*}\right)\right) \simeq H^{0}(P, \mathcal{O}(n)) \simeq \mathrm{S}^{n}\left(\mathbb{C}^{2}\right)
$$

This generalizes the curve-in-a-surface construction as follows:

Moduli of rational contact curves: Suppose that X is a holomorphic contact 3 -fold, with contact line bundle $L \subset T^{*} X$ and let $C \subset X$ be an embedded rational curve that is contact (aka Legendrian) and suppose that $n \geq 1$ is such that

$$
C^{*}\left(L^{*}\right) \simeq \mathcal{O}(n)
$$

Then it can be shown that $\nu \simeq \mathcal{O}(n-1) \oplus \mathcal{O}(n-1)$.
Moreover, not only is M smooth and of dimension $2 n$ near C, but the subset

$$
Y=\left\{P \in M \mid P \text { is contact and } P^{*}\left(L^{*}\right) \simeq \mathcal{O}(n)\right\}
$$

is a smooth subvariety of dimension $n+1$, such that, for all $P \in Y$,

$$
T_{P} Y=H^{0}\left(P, P^{*}\left(L^{*}\right)\right) \simeq H^{0}(P, \mathcal{O}(n)) \simeq \mathrm{S}^{n}\left(\mathbb{C}^{2}\right)
$$

This generalizes the curve-in-a-surface construction as follows: If S is a surface, let $X=\mathbb{P}(T S)=\mathbb{P}\left(T^{*} S\right)$. Then X is endowed with a canonical contact structure $L \subset T^{*} X$, and every curve $C \subset S$ lifts canonically to a contact curve $C \subset X$. The moduli space Y in this case is equal to the moduli space M associated to $C \subset S$.

Theorem 0: [B-,1987] Every torsion-free G_{3}-structure is locally constructed as the one arising on the moduli of rational contact curves C in some contact 3 -fold X with $C^{*}\left(L^{*}\right) \simeq \mathcal{O}(3)$.

Theorem 0: [B-,1987] Every torsion-free G_{3}-structure is locally constructed as the one arising on the moduli of rational contact curves C in some contact 3 -fold X with $C^{*}\left(L^{*}\right) \simeq \mathcal{O}(3)$.

This raises the question of determining which G_{n}-structures arise on the moduli spaces of rational contact curves C in some contact 3-fold X with $C^{*}\left(L^{*}\right) \simeq \mathcal{O}(n)$ and determining how general these structures are.

Theorem 0: [B-,1987] Every torsion-free G_{3}-structure is locally constructed as the one arising on the moduli of rational contact curves C in some contact 3 -fold X with $C^{*}\left(L^{*}\right) \simeq \mathcal{O}(3)$.

This raises the question of determining which G_{n}-structures arise on the moduli spaces of rational contact curves C in some contact 3-fold X with $C^{*}\left(L^{*}\right) \simeq \mathcal{O}(n)$ and determining how general these structures are.

Theorem 1: [B-,2008] A RNS $Z \subset \mathbb{P}(T M)$ arises on a moduli space of rational contact curves $C \subset X$ with $C^{*}\left(L^{*}\right) \simeq \mathcal{O}(n)$ if and only if the dual structure $Z^{*} \subset \mathbb{P}\left(T^{*} M\right)$ is involutive.

Theorem 0: [B-,1987] Every torsion-free G_{3}-structure is locally constructed as the one arising on the moduli of rational contact curves C in some contact 3 -fold X with $C^{*}\left(L^{*}\right) \simeq \mathcal{O}(3)$.

This raises the question of determining which G_{n}-structures arise on the moduli spaces of rational contact curves C in some contact 3-fold X with $C^{*}\left(L^{*}\right) \simeq \mathcal{O}(n)$ and determining how general these structures are.

Theorem 1: [B-,2008] A RNS $Z \subset \mathbb{P}(T M)$ arises on a moduli space of rational contact curves $C \subset X$ with $C^{*}\left(L^{*}\right) \simeq \mathcal{O}(n)$ if and only if the dual structure $Z^{*} \subset \mathbb{P}\left(T^{*} M\right)$ is involutive.

Remark: The involutivity of Z^{*} is a system of first-order PDE.

Theorem 0: [B-,1987] Every torsion-free G_{3}-structure is locally constructed as the one arising on the moduli of rational contact curves C in some contact 3 -fold X with $C^{*}\left(L^{*}\right) \simeq \mathcal{O}(3)$.

This raises the question of determining which G_{n}-structures arise on the moduli spaces of rational contact curves C in some contact 3-fold X with $C^{*}\left(L^{*}\right) \simeq \mathcal{O}(n)$ and determining how general these structures are.

Theorem 1: [B-,2008] A RNS $Z \subset \mathbb{P}(T M)$ arises on a moduli space of rational contact curves $C \subset X$ with $C^{*}\left(L^{*}\right) \simeq \mathcal{O}(n)$ if and only if the dual structure $Z^{*} \subset \mathbb{P}\left(T^{*} M\right)$ is involutive.

Remark: The involutivity of Z^{*} is a system of first-order PDE.
Theorem 2: [B—,2008] Modulo diffeomorphism, the local G_{n}-structures on M^{n+1} whose associated dual variety in $\mathbb{P}\left(T^{*} M\right)$ is involutive depend on $2 n-2$ functions of 3 variables.

Involutivity in $\mathbb{P}\left(T^{*} M\right)$: Let M be an $(n+1)$-manifold.

Involutivity in $\mathbb{P}\left(T^{*} M\right)$: Let M be an $(n+1)$-manifold.
The bundle $T^{*} M$ is naturally a symplectic manifold and hence the bundle $\mathbb{P}\left(T^{*} M\right)$ is naturally a contact manifold. If λ is a (local) contact form on $\mathbb{P}\left(T^{*} M\right)$, then $\lambda \wedge(\mathrm{d} \lambda)^{n} \neq 0$.

Involutivity in $\mathbb{P}\left(T^{*} M\right)$: Let M be an $(n+1)$-manifold.
The bundle $T^{*} M$ is naturally a symplectic manifold and hence the bundle $\mathbb{P}\left(T^{*} M\right)$ is naturally a contact manifold. If λ is a (local) contact form on $\mathbb{P}\left(T^{*} M\right)$, then $\lambda_{\wedge}(\mathrm{d} \lambda)^{n} \neq 0$.

Definition: A submanifold $S \subset \mathbb{P}\left(T^{*} M\right)$ of codimension $k \leq n+1$ is said to be involutive if

$$
S^{*}\left(\lambda \wedge(\mathrm{~d} \lambda)^{n-k+1}\right)=0
$$

for some (and hence any) nonvanishing contact form λ.

Involutivity in $\mathbb{P}\left(T^{*} M\right)$: Let M be an $(n+1)$-manifold.
The bundle $T^{*} M$ is naturally a symplectic manifold and hence the bundle $\mathbb{P}\left(T^{*} M\right)$ is naturally a contact manifold. If λ is a (local) contact form on $\mathbb{P}\left(T^{*} M\right)$, then $\lambda_{\wedge}(\mathrm{d} \lambda)^{n} \neq 0$.

Definition: A submanifold $S \subset \mathbb{P}\left(T^{*} M\right)$ of codimension $k \leq n+1$ is said to be involutive if

$$
S^{*}\left(\lambda \wedge(\mathrm{~d} \lambda)^{n-k+1}\right)=0
$$

for some (and hence any) nonvanishing contact form λ.
Remark: It is easy to show that, if $S^{*} \lambda \neq 0$, then $S^{*}\left(\lambda \wedge(\mathrm{~d} \lambda)^{n-k}\right) \neq 0$.

Involutivity in $\mathbb{P}\left(T^{*} M\right)$: Let M be an $(n+1)$-manifold.
The bundle $T^{*} M$ is naturally a symplectic manifold and hence the bundle $\mathbb{P}\left(T^{*} M\right)$ is naturally a contact manifold. If λ is a (local) contact form on $\mathbb{P}\left(T^{*} M\right)$, then $\lambda_{\wedge}(\mathrm{d} \lambda)^{n} \neq 0$.
Definition: A submanifold $S \subset \mathbb{P}\left(T^{*} M\right)$ of codimension $k \leq n+1$ is said to be involutive if

$$
S^{*}\left(\lambda \wedge(\mathrm{~d} \lambda)^{n-k+1}\right)=0
$$

for some (and hence any) nonvanishing contact form λ.
Remark: It is easy to show that, if $S^{*} \lambda \neq 0$, then $S^{*}\left(\lambda \wedge(\mathrm{~d} \lambda)^{n-k}\right) \neq 0$.
Involutivity is a first-order PDE on submanifolds of codimension $k \leq$ $n+1$ and is the natural analog of the (sub-)Legendrian condition for submanifolds of codimension $k \geq n+1$.

Involutivity in $\mathbb{P}\left(T^{*} M\right)$: Let M be an $(n+1)$-manifold.
The bundle $T^{*} M$ is naturally a symplectic manifold and hence the bundle $\mathbb{P}\left(T^{*} M\right)$ is naturally a contact manifold. If λ is a (local) contact form on $\mathbb{P}\left(T^{*} M\right)$, then $\lambda \wedge(\mathrm{d} \lambda)^{n} \neq 0$.
Definition: A submanifold $S \subset \mathbb{P}\left(T^{*} M\right)$ of codimension $k \leq n+1$ is said to be involutive if

$$
S^{*}\left(\lambda \wedge(\mathrm{~d} \lambda)^{n-k+1}\right)=0
$$

for some (and hence any) nonvanishing contact form λ.
Remark: It is easy to show that, if $S^{*} \lambda \neq 0$, then $S^{*}\left(\lambda \wedge(\mathrm{~d} \lambda)^{n-k}\right) \neq 0$.
Involutivity is a first-order PDE on submanifolds of codimension $k \leq$ $n+1$ and is the natural analog of the (sub-)Legendrian condition for submanifolds of codimension $k \geq n+1$.

For $Z^{*} \subset \mathbb{P}\left(T^{*} M\right)$, which has codimension $n-1$, this is the condition

$$
\left(Z^{*}\right)^{*}\left(\lambda \wedge(\mathrm{~d} \lambda)^{2}\right)=0
$$

Theorem: If M is a moduli space of rational contact curves $C \subset X$ with $C^{*}\left(L^{*}\right) \simeq \mathcal{O}(n)$, then the associated RNS $Z \subset \mathbb{P}(T M)$ has its dual variety $Z^{*} \subset \mathbb{P}\left(T^{*} M\right)$ be involutive.

Theorem: If M is a moduli space of rational contact curves $C \subset X$ with $C^{*}\left(L^{*}\right) \simeq \mathcal{O}(n)$, then the associated RNS $Z \subset \mathbb{P}(T M)$ has its dual variety $Z^{*} \subset \mathbb{P}\left(T^{*} M\right)$ be involutive.
Proof idea: Fix $C \in M$ and choose a point $p \in C \subset X$. One can choose C-centered coordinates c_{0}, \ldots, c_{n} on M and p-centered coordinates x, y, z on X so that
(1) $\lambda=\mathrm{d} y-z \mathrm{~d} x$
(2) The curves in M near C are described by the locus $W \subset M \times X$ of the equations

$$
\begin{aligned}
& y=c_{0}+c_{1} x+\cdots+c_{n} x^{n}+x^{n+1} F(c, x) \\
& z=c_{1}+2 c_{2} x+\cdots+n c_{n} x^{n-1}+x^{n}\left((n+1) F(c, x)+x F_{x}(c, x)\right)
\end{aligned}
$$

Theorem: If M is a moduli space of rational contact curves $C \subset X$ with $C^{*}\left(L^{*}\right) \simeq \mathcal{O}(n)$, then the associated RNS $Z \subset \mathbb{P}(T M)$ has its dual variety $Z^{*} \subset \mathbb{P}\left(T^{*} M\right)$ be involutive.
Proof idea: Fix $C \in M$ and choose a point $p \in C \subset X$. One can choose C-centered coordinates c_{0}, \ldots, c_{n} on M and p-centered coordinates x, y, z on X so that
(1) $\lambda=\mathrm{d} y-z \mathrm{~d} x$
(2) The curves in M near C are described by the locus $W \subset M \times X$ of the equations

$$
\begin{aligned}
& y=c_{0}+c_{1} x+\cdots+c_{n} x^{n}+x^{n+1} F(c, x) \\
& z=c_{1}+2 c_{2} x+\cdots+n c_{n} x^{n-1}+x^{n}\left((n+1) F(c, x)+x F_{x}(c, x)\right)
\end{aligned}
$$

But then

$$
\lambda=\mathrm{d} y-z \mathrm{~d} x=\left(1+x^{n+1} F_{c_{0}}\right) \mathrm{d} c_{0}+\cdots+\left(x^{n}+x^{n+1} F_{c_{n}}\right) \mathrm{d} c_{n}
$$

and the map $[\lambda]: W \rightarrow \mathbb{P}\left(T^{*} M\right)$ thus embeds W as the dual variety Z^{*}, which is totally unramified on each fiber and hence has its image a rational normal curve in each $T_{c} M$.

Theorem: If M is a moduli space of rational contact curves $C \subset X$ with $C^{*}\left(L^{*}\right) \simeq \mathcal{O}(n)$, then the associated RNS $Z \subset \mathbb{P}(T M)$ has its dual variety $Z^{*} \subset \mathbb{P}\left(T^{*} M\right)$ be involutive.
Proof idea: Fix $C \in M$ and choose a point $p \in C \subset X$. One can choose C-centered coordinates c_{0}, \ldots, c_{n} on M and p-centered coordinates x, y, z on X so that
(1) $\lambda=\mathrm{d} y-z \mathrm{~d} x$
(2) The curves in M near C are described by the locus $W \subset M \times X$ of the equations

$$
\begin{aligned}
& y=c_{0}+c_{1} x+\cdots+c_{n} x^{n}+x^{n+1} F(c, x) \\
& z=c_{1}+2 c_{2} x+\cdots+n c_{n} x^{n-1}+x^{n}\left((n+1) F(c, x)+x F_{x}(c, x)\right)
\end{aligned}
$$

But then

$$
\lambda=\mathrm{d} y-z \mathrm{~d} x=\left(1+x^{n+1} F_{c_{0}}\right) \mathrm{d} c_{0}+\cdots+\left(x^{n}+x^{n+1} F_{c_{n}}\right) \mathrm{d} c_{n},
$$

and the map $[\lambda]: W \rightarrow \mathbb{P}\left(T^{*} M\right)$ thus embeds W as the dual variety Z^{*}, which is totally unramified on each fiber and hence has its image a rational normal curve in each $T_{c} M$. The involutivity follows since $\lambda \wedge(\mathrm{d} \lambda)^{2}=0$.

Some representation theory. The standard action of $\mathrm{SL}(2, \mathbb{C})$ on \mathbb{C}^{2} induces representations of $\mathrm{SL}(2, \mathbb{C})$ on $V_{k}=\mathrm{S}^{k}\left(\mathbb{C}^{2}\right)$ for $k \geq 0$, and this gives the entire list of irreducible representations of $\operatorname{SL}(2, \mathbb{C})$.

Some representation theory. The standard action of $\mathrm{SL}(2, \mathbb{C})$ on \mathbb{C}^{2} induces representations of $\operatorname{SL}(2, \mathbb{C})$ on $V_{k}=\mathrm{S}^{k}\left(\mathbb{C}^{2}\right)$ for $k \geq 0$, and this gives the entire list of irreducible representations of $\operatorname{SL}(2, \mathbb{C})$.

Regarding x, y as a basis of \mathbb{C}^{2}, we have V_{k} as homogeneous polynomials in x and y of degree k. There are $\mathrm{SL}(2, \mathbb{C})$-equivariant pairings

$$
\langle,\rangle_{p}: V_{m} \times V_{n} \longrightarrow V_{m+n-2 p}
$$

for $0 \leq p \leq \min (m, n)$ (called 'transvectants') that are defined by

$$
\langle u, v\rangle_{p}=(-1)^{p}\langle v, u\rangle_{p}=\sum_{k=0}^{p} \frac{(-1)^{k}}{k!(p-k)!} \frac{\partial^{p} u}{\partial x^{p-k} \partial y^{k}} \frac{\partial^{p} v}{\partial x^{k} \partial y^{p-k}}
$$

Some representation theory. The standard action of $\operatorname{SL}(2, \mathbb{C})$ on \mathbb{C}^{2} induces representations of $\operatorname{SL}(2, \mathbb{C})$ on $V_{k}=\mathrm{S}^{k}\left(\mathbb{C}^{2}\right)$ for $k \geq 0$, and this gives the entire list of irreducible representations of $\operatorname{SL}(2, \mathbb{C})$.

Regarding x, y as a basis of \mathbb{C}^{2}, we have V_{k} as homogeneous polynomials in x and y of degree k. There are $\mathrm{SL}(2, \mathbb{C})$-equivariant pairings

$$
\langle,\rangle_{p}: V_{m} \times V_{n} \longrightarrow V_{m+n-2 p}
$$

for $0 \leq p \leq \min (m, n)$ (called 'transvectants') that are defined by

$$
\langle u, v\rangle_{p}=(-1)^{p}\langle v, u\rangle_{p}=\sum_{k=0}^{p} \frac{(-1)^{k}}{k!(p-k)!} \frac{\partial^{p} u}{\partial x^{p-k} \partial y^{k}} \frac{\partial^{p} v}{\partial x^{k} \partial y^{p-k}}
$$

For example, $\langle u, v\rangle_{0}=u v$ and $\langle u, v\rangle_{1}=u_{x} v_{y}-u_{y} v_{x}$.

Some representation theory. The standard action of $\operatorname{SL}(2, \mathbb{C})$ on \mathbb{C}^{2} induces representations of $\operatorname{SL}(2, \mathbb{C})$ on $V_{k}=\mathrm{S}^{k}\left(\mathbb{C}^{2}\right)$ for $k \geq 0$, and this gives the entire list of irreducible representations of $\mathrm{SL}(2, \mathbb{C})$.

Regarding x, y as a basis of \mathbb{C}^{2}, we have V_{k} as homogeneous polynomials in x and y of degree k. There are $\mathrm{SL}(2, \mathbb{C})$-equivariant pairings

$$
\langle,\rangle_{p}: V_{m} \times V_{n} \longrightarrow V_{m+n-2 p}
$$

for $0 \leq p \leq \min (m, n)$ (called 'transvectants') that are defined by

$$
\langle u, v\rangle_{p}=(-1)^{p}\langle v, u\rangle_{p}=\sum_{k=0}^{p} \frac{(-1)^{k}}{k!(p-k)!} \frac{\partial^{p} u}{\partial x^{p-k} \partial y^{k}} \frac{\partial^{p} v}{\partial x^{k} \partial y^{p-k}}
$$

For example, $\langle u, v\rangle_{0}=u v$ and $\langle u, v\rangle_{1}=u_{x} v_{y}-u_{y} v_{x}$.
These pairings help make explicit the Clebsch-Gordan formulae

$$
\begin{aligned}
V_{m} \otimes V_{n} & \simeq V_{m+n} \oplus V_{m+n-2} \oplus \cdots \oplus V_{|m-n|} \\
S^{2}\left(V_{m}\right) & \simeq V_{2 m} \oplus V_{2 m-4} \oplus \cdots \\
\Lambda^{2}\left(V_{m}\right) & \simeq V_{2 m-2} \oplus V_{2 m-6} \oplus \cdots
\end{aligned}
$$

Some differential geometry: Let M be an $(n+1)$-manifold with $F \rightarrow M$ the bundle of V_{n}-valued coframes, i.e., each $u \in F$ is an isomorphism u : $T_{x} M \rightarrow V_{n}$.

Some differential geometry: Let M be an $(n+1)$-manifold with $F \rightarrow M$ the bundle of V_{n}-valued coframes, i.e., each $u \in F$ is an isomorphism u : $T_{x} M \rightarrow V_{n}$. Then F is endowed with a tautological V_{n}-valued 1-form

$$
\eta=\eta_{-n} x^{n}+\eta_{2-n} x^{n-1} y+\cdots+\eta_{n-2} x y^{n-1}+\eta_{n} y^{n} .
$$

Some differential geometry: Let M be an $(n+1)$-manifold with $F \rightarrow M$ the bundle of V_{n}-valued coframes, i.e., each $u \in F$ is an isomorphism u : $T_{x} M \rightarrow V_{n}$. Then F is endowed with a tautological V_{n}-valued 1-form

$$
\eta=\eta_{-n} x^{n}+\eta_{2-n} x^{n-1} y+\cdots+\eta_{n-2} x y^{n-1}+\eta_{n} y^{n} .
$$

If $B \subset F$ is a G_{n}-structure on M, set $\omega=B^{*} \eta$.

Some differential geometry: Let M be an $(n+1)$-manifold with $F \rightarrow M$ the bundle of V_{n}-valued coframes, i.e., each $u \in F$ is an isomorphism u : $T_{x} M \rightarrow V_{n}$. Then F is endowed with a tautological V_{n}-valued 1-form

$$
\eta=\eta_{-n} x^{n}+\eta_{2-n} x^{n-1} y+\cdots+\eta_{n-2} x y^{n-1}+\eta_{n} y^{n} .
$$

If $B \subset F$ is a G_{n}-structure on M, set $\omega=B^{*} \eta$.
Define a $\operatorname{map} \xi: F \rightarrow \mathbb{P}\left(T^{*} M\right)$ by $\xi(u)=\left[\left\langle x^{n}, u\right\rangle_{n}\right]=\left[u_{n}\right]$. It is easy to see that
(1) ξ pulls back a contact form to be a multiple of η_{n}, and
(2) For any G_{n}-structure B, the image $\xi(B)$ is Z^{*}, the dual RNS.

Some differential geometry: Let M be an $(n+1)$-manifold with $F \rightarrow M$ the bundle of V_{n}-valued coframes, i.e., each $u \in F$ is an isomorphism u : $T_{x} M \rightarrow V_{n}$. Then F is endowed with a tautological V_{n}-valued 1-form

$$
\eta=\eta_{-n} x^{n}+\eta_{2-n} x^{n-1} y+\cdots+\eta_{n-2} x y^{n-1}+\eta_{n} y^{n} .
$$

If $B \subset F$ is a G_{n}-structure on M, set $\omega=B^{*} \eta$.
Define a $\operatorname{map} \xi: F \rightarrow \mathbb{P}\left(T^{*} M\right)$ by $\xi(u)=\left[\left\langle x^{n}, u\right\rangle_{n}\right]=\left[u_{n}\right]$. It is easy to see that
(1) ξ pulls back a contact form to be a multiple of η_{n}, and
(2) For any G_{n}-structure B, the image $\xi(B)$ is Z^{*}, the dual RNS.

Hence, the involutivity condition for Z^{*} becomes $\omega_{n \wedge} \wedge\left(\mathrm{~d} \omega_{n}\right)^{2}=0$ on B.

Some differential geometry: Let M be an $(n+1)$-manifold with $F \rightarrow M$ the bundle of V_{n}-valued coframes, i.e., each $u \in F$ is an isomorphism u : $T_{x} M \rightarrow V_{n}$. Then F is endowed with a tautological V_{n}-valued 1-form

$$
\eta=\eta_{-n} x^{n}+\eta_{2-n} x^{n-1} y+\cdots+\eta_{n-2} x y^{n-1}+\eta_{n} y^{n} .
$$

If $B \subset F$ is a G_{n}-structure on M, set $\omega=B^{*} \eta$.
Define a $\operatorname{map} \xi: F \rightarrow \mathbb{P}\left(T^{*} M\right)$ by $\xi(u)=\left[\left\langle x^{n}, u\right\rangle_{n}\right]=\left[u_{n}\right]$. It is easy to see that
(1) ξ pulls back a contact form to be a multiple of η_{n}, and
(2) For any G_{n}-structure B, the image $\xi(B)$ is Z^{*}, the dual RNS.

Hence, the involutivity condition for Z^{*} becomes $\omega_{n \wedge} \wedge\left(\mathrm{~d} \omega_{n}\right)^{2}=0$ on B.
An equivalent condition is that $\mathrm{d} \omega_{n} \wedge \omega_{n} \wedge \omega_{n-2}=0$, which leads to:

Some differential geometry: Let M be an $(n+1)$-manifold with $F \rightarrow M$ the bundle of V_{n}-valued coframes, i.e., each $u \in F$ is an isomorphism u : $T_{x} M \rightarrow V_{n}$. Then F is endowed with a tautological V_{n}-valued 1-form

$$
\eta=\eta_{-n} x^{n}+\eta_{2-n} x^{n-1} y+\cdots+\eta_{n-2} x y^{n-1}+\eta_{n} y^{n} .
$$

If $B \subset F$ is a G_{n}-structure on M, set $\omega=B^{*} \eta$.
Define a $\operatorname{map} \xi: F \rightarrow \mathbb{P}\left(T^{*} M\right)$ by $\xi(u)=\left[\left\langle x^{n}, u\right\rangle_{n}\right]=\left[u_{n}\right]$. It is easy to see that
(1) ξ pulls back a contact form to be a multiple of η_{n}, and
(2) For any G_{n}-structure B, the image $\xi(B)$ is Z^{*}, the dual RNS.

Hence, the involutivity condition for Z^{*} becomes $\omega_{n \wedge} \wedge\left(\mathrm{~d} \omega_{n}\right)^{2}=0$ on B.
An equivalent condition is that $\mathrm{d} \omega_{n} \wedge \omega_{n} \wedge \omega_{n-2}=0$, which leads to:
Proposition: A G_{n}-structure $B \subset F$ has its associated Z^{*} be involutive if and only if it is an integral manifold of the $V_{3 n-2}$-valued 4 -form

$$
\Upsilon=\left\langle\mathrm{d} \eta,\langle\eta, \eta\rangle_{1}\right\rangle_{0} .
$$

Connections and intrinsic torsion: Let $B \subset F$ be a G_{n}-structure.

Connections and intrinsic torsion: Let $B \subset F$ be a G_{n}-structure. Then there will exist connection 1-forms ρ and ϕ on B with values in $V_{0}=\mathbb{C}$ and $V_{2} \simeq \mathfrak{s l}(2, \mathbb{C})$, respectively, so that the first structure equation on B takes the form

$$
\mathrm{d} \omega=-\rho \wedge \omega-\langle\phi, \omega\rangle_{1}+T(\omega \wedge \omega)
$$

where $T: B \rightarrow \operatorname{Hom}\left(\Lambda^{2}\left(V_{n}\right), V_{n}\right)$ is the G_{n}-equivariant torsion function associated to the connection (ρ, ϕ).

Connections and intrinsic torsion: Let $B \subset F$ be a G_{n}-structure. Then there will exist connection 1-forms ρ and ϕ on B with values in $V_{0}=\mathbb{C}$ and $V_{2} \simeq \mathfrak{s l}(2, \mathbb{C})$, respectively, so that the first structure equation on B takes the form

$$
\mathrm{d} \omega=-\rho \wedge \omega-\langle\phi, \omega\rangle_{1}+T(\omega \wedge \omega)
$$

where $T: B \rightarrow \operatorname{Hom}\left(\Lambda^{2}\left(V_{n}\right), V_{n}\right)$ is the G_{n}-equivariant torsion function associated to the connection (ρ, ϕ).

Since the choice of connection cannot affect the integrability of Z^{*}, one sees that

$$
B^{*} \Upsilon=\left\langle\mathrm{d} \omega,\langle\omega, \omega\rangle_{1}\right\rangle_{0}=\left\langle T(\omega \wedge \omega),\langle\omega, \omega\rangle_{1}\right\rangle_{0}
$$

so that $B^{*} \Upsilon=0$ must represent some number of linear equations on the intrinsic torsion, i.e., the part of the torsion unaffected by the choice of connection. (This takes values in $H^{0,2}\left(\mathfrak{g}_{n}\right)$.)

Connections and intrinsic torsion: Let $B \subset F$ be a G_{n}-structure. Then there will exist connection 1-forms ρ and ϕ on B with values in $V_{0}=\mathbb{C}$ and $V_{2} \simeq \mathfrak{s l}(2, \mathbb{C})$, respectively, so that the first structure equation on B takes the form

$$
\mathrm{d} \omega=-\rho \wedge \omega-\langle\phi, \omega\rangle_{1}+T(\omega \wedge \omega)
$$

where $T: B \rightarrow \operatorname{Hom}\left(\Lambda^{2}\left(V_{n}\right), V_{n}\right)$ is the G_{n}-equivariant torsion function associated to the connection (ρ, ϕ).

Since the choice of connection cannot affect the integrability of Z^{*}, one sees that

$$
B^{*} \Upsilon=\left\langle\mathrm{d} \omega,\langle\omega, \omega\rangle_{1}\right\rangle_{0}=\left\langle T(\omega \wedge \omega),\langle\omega, \omega\rangle_{1}\right\rangle_{0}
$$

so that $B^{*} \Upsilon=0$ must represent some number of linear equations on the intrinsic torsion, i.e., the part of the torsion unaffected by the choice of connection. (This takes values in $H^{0,2}\left(\mathfrak{g}_{n}\right)$.)
Proposition: The condition $B^{*} \Upsilon=0$ imposes $N=\frac{1}{2}(n-1)(n-2)(n+5)$ linear equations on the intrinsic torsion. The submodule of $H^{0,2}\left(\mathfrak{g}_{n}\right)$ that corresponds to these equations is isomorphic to $V_{2} \otimes V_{n-4}$.

Proposition: $(n \geq 3)$ If $B \subset F$ is a G_{n}-structure that satisfies $B^{*} \Upsilon=0$, then there is a unique choice of connection (ρ, ϕ) on B for which

$$
\mathrm{d} \omega_{n}=-\left(\rho-n \phi_{0}\right) \wedge \omega_{n}+2 \phi_{2} \wedge \omega_{n-2} .
$$

The ideal generated by $\left\{\omega_{n}, \omega_{n-2}, \phi_{2}\right\}$ is therefore Frobenius and defines a codimension 3 foliation on Z^{*}.

Proposition: $(n \geq 3)$ If $B \subset F$ is a G_{n}-structure that satisfies $B^{*} \Upsilon=0$, then there is a unique choice of connection (ρ, ϕ) on B for which

$$
\mathrm{d} \omega_{n}=-\left(\rho-n \phi_{0}\right) \wedge \omega_{n}+2 \phi_{2} \wedge \omega_{n-2} .
$$

The ideal generated by $\left\{\omega_{n}, \omega_{n-2}, \phi_{2}\right\}$ is therefore Frobenius and defines a codimension 3 foliation on Z^{*}. If X^{3} is its leaf space, then X inherits a contact structure from ω_{n} and the double fibration

exhibits M as a (local) moduli space of rational contact curves in X.

Proposition: $(n \geq 3)$ If $B \subset F$ is a G_{n}-structure that satisfies $B^{*} \Upsilon=0$, then there is a unique choice of connection (ρ, ϕ) on B for which

$$
\mathrm{d} \omega_{n}=-\left(\rho-n \phi_{0}\right) \wedge \omega_{n}+2 \phi_{2} \wedge \omega_{n-2} .
$$

The ideal generated by $\left\{\omega_{n}, \omega_{n-2}, \phi_{2}\right\}$ is therefore Frobenius and defines a codimension 3 foliation on Z^{*}. If X^{3} is its leaf space, then X inherits a contact structure from ω_{n} and the double fibration

exhibits M as a (local) moduli space of rational contact curves in X.
Theorem: The ideal \mathcal{I} on F generated by the components of Υ is involutive, with Cartan characters given by

$$
s_{0}=s_{1}=s_{2}=0, \quad s_{3}=3 n-1, \quad \text { and } s_{k}=n+1 \text { for } 4 \leq k \leq n+1
$$

Proposition: $(n \geq 3)$ If $B \subset F$ is a G_{n}-structure that satisfies $B^{*} \Upsilon=0$, then there is a unique choice of connection (ρ, ϕ) on B for which

$$
\mathrm{d} \omega_{n}=-\left(\rho-n \phi_{0}\right) \wedge \omega_{n}+2 \phi_{2} \wedge \omega_{n-2} .
$$

The ideal generated by $\left\{\omega_{n}, \omega_{n-2}, \phi_{2}\right\}$ is therefore Frobenius and defines a codimension 3 foliation on Z^{*}. If X^{3} is its leaf space, then X inherits a contact structure from ω_{n} and the double fibration

exhibits M as a (local) moduli space of rational contact curves in X.
Theorem: The ideal \mathcal{I} on F generated by the components of Υ is involutive, with Cartan characters given by

$$
s_{0}=s_{1}=s_{2}=0, \quad s_{3}=3 n-1, \quad \text { and } s_{k}=n+1 \text { for } 4 \leq k \leq n+1
$$

Remark: This result does not determine the generality modulo diffeomorphism because of the diffeomorphism invariance of the conditions.

The second structure equations: Given a G_{n}-structure $B \rightarrow M$ whose associated dual RNS is involutive, one has the first structure equation

$$
\mathrm{d} \omega=-\rho \wedge \omega-\langle\phi, \omega\rangle_{1}+T(\omega \wedge \omega)
$$

where $T: B \rightarrow I_{1} \subset \operatorname{Hom}\left(\Lambda^{2}\left(V_{n}\right), V_{n}\right)$ is the G_{n}-invariant torsion function and $I_{1} \simeq V_{2} \otimes V_{n-4}$ is the submodule of allowable torsion for such structures. This is the first structure equation.

The second structure equations: Given a G_{n}-structure $B \rightarrow M$ whose associated dual RNS is involutive, one has the first structure equation

$$
\mathrm{d} \omega=-\rho \wedge \omega-\langle\phi, \omega\rangle_{1}+T(\omega \wedge \omega)
$$

where $T: B \rightarrow I_{1} \subset \operatorname{Hom}\left(\Lambda^{2}\left(V_{n}\right), V_{n}\right)$ is the G_{n}-invariant torsion function and $I_{1} \simeq V_{2} \otimes V_{n-4}$ is the submodule of allowable torsion for such structures. This is the first structure equation.

The second structure equation has the form

$$
\begin{aligned}
\mathrm{d} \rho & =R(\omega \wedge \omega) \\
\mathrm{d} \phi & =-\frac{1}{2}\langle\phi, \phi\rangle_{1}+F(\omega \wedge \omega)
\end{aligned}
$$

where $R: B \rightarrow \operatorname{Hom}\left(\Lambda^{2}\left(V_{n}\right), V_{0}\right)$ and $F: B \rightarrow \operatorname{Hom}\left(\Lambda^{2}\left(V_{n}\right), V_{2}\right)$ are the G_{n}-invariant curvature functions.

The second structure equations: Given a G_{n}-structure $B \rightarrow M$ whose associated dual RNS is involutive, one has the first structure equation

$$
\mathrm{d} \omega=-\rho \wedge \omega-\langle\phi, \omega\rangle_{1}+T(\omega \wedge \omega)
$$

where $T: B \rightarrow I_{1} \subset \operatorname{Hom}\left(\Lambda^{2}\left(V_{n}\right), V_{n}\right)$ is the G_{n}-invariant torsion function and $I_{1} \simeq V_{2} \otimes V_{n-4}$ is the submodule of allowable torsion for such structures. This is the first structure equation.

The second structure equation has the form

$$
\begin{aligned}
\mathrm{d} \rho & =R(\omega \wedge \omega) \\
\mathrm{d} \phi & =-\frac{1}{2}\langle\phi, \phi\rangle_{1}+F(\omega \wedge \omega)
\end{aligned}
$$

where $R: B \rightarrow \operatorname{Hom}\left(\Lambda^{2}\left(V_{n}\right), V_{0}\right)$ and $F: B \rightarrow \operatorname{Hom}\left(\Lambda^{2}\left(V_{n}\right), V_{2}\right)$ are the G_{n}-invariant curvature functions. The Bianchi identity gives

$$
0=-R(\omega \wedge \omega) \wedge \omega-\langle F(\omega \wedge \omega), \omega\rangle_{1}+(D T)(\omega \wedge \omega)
$$

and this describes all of the relations between the second order invariants.

The second structure equations: Given a G_{n}-structure $B \rightarrow M$ whose associated dual RNS is involutive, one has the first structure equation

$$
\mathrm{d} \omega=-\rho \wedge \omega-\langle\phi, \omega\rangle_{1}+T(\omega \wedge \omega)
$$

where $T: B \rightarrow I_{1} \subset \operatorname{Hom}\left(\Lambda^{2}\left(V_{n}\right), V_{n}\right)$ is the G_{n}-invariant torsion function and $I_{1} \simeq V_{2} \otimes V_{n-4}$ is the submodule of allowable torsion for such structures. This is the first structure equation.

The second structure equation has the form

$$
\begin{aligned}
& \mathrm{d} \rho=R(\omega \wedge \omega) \\
& \mathrm{d} \phi=-\frac{1}{2}\langle\phi, \phi\rangle_{1}+F(\omega \wedge \omega)
\end{aligned}
$$

where $R: B \rightarrow \operatorname{Hom}\left(\Lambda^{2}\left(V_{n}\right), V_{0}\right)$ and $F: B \rightarrow \operatorname{Hom}\left(\Lambda^{2}\left(V_{n}\right), V_{2}\right)$ are the G_{n}-invariant curvature functions. The Bianchi identity gives

$$
0=-R(\omega \wedge \omega) \wedge \omega-\langle F(\omega \wedge \omega), \omega\rangle_{1}+(D T)(\omega \wedge \omega)
$$

and this describes all of the relations between the second order invariants. Solving this equation shows that the second-order invariants take values in a module I_{2} isomorphic to $V_{3} \otimes V_{2 n-5}$.

Theorem: The structure equations for a G_{n}-structure B with involutive dual variety Z^{*}, namely,

$$
\begin{aligned}
\mathrm{d} \omega & =-\rho \wedge \omega-\langle\phi, \omega\rangle_{1}+T(\omega \wedge \omega) \\
\mathrm{d} \rho & =R(\omega \wedge \omega) \\
\mathrm{d} \phi & =-\frac{1}{2}\langle\phi, \phi\rangle_{1}+F(\omega \wedge \omega)
\end{aligned}
$$

where the first order invariants take values in $I_{1} \simeq V_{2} \otimes V_{n-4}$ and the second order invariants take values in $I_{2} \simeq V_{3} \otimes V_{2 n-5}$, are involutive, with Cartan characters

$$
s_{0}=0, \quad s_{1}=3 n-9, \quad s_{2}=3 n-5, \quad s_{3}=2 n-2, \quad s_{4}=0
$$

Consequently, the general such structure, modulo diffeomorphism, depends on $2 n-2$ functions of 3 variables.

Theorem: The structure equations for a G_{n}-structure B with involutive dual variety Z^{*}, namely,

$$
\begin{aligned}
\mathrm{d} \omega & =-\rho \wedge \omega-\langle\phi, \omega\rangle_{1}+T(\omega \wedge \omega) \\
\mathrm{d} \rho & =R(\omega \wedge \omega) \\
\mathrm{d} \phi & =-\frac{1}{2}\langle\phi, \phi\rangle_{1}+F(\omega \wedge \omega)
\end{aligned}
$$

where the first order invariants take values in $I_{1} \simeq V_{2} \otimes V_{n-4}$ and the second order invariants take values in $I_{2} \simeq V_{3} \otimes V_{2 n-5}$, are involutive, with Cartan characters

$$
s_{0}=0, \quad s_{1}=3 n-9, \quad s_{2}=3 n-5, \quad s_{3}=2 n-2, \quad s_{4}=0
$$

Consequently, the general such structure, modulo diffeomorphism, depends on $2 n-2$ functions of 3 variables.

Proof: A calculation.

