INVOLUTIVE RATIONAL NORMAL STRUCTURES

ROBERT L. BRYANT
MATHEMATICAL SCIENCES RESEARCH INSTITUTE

MAY 12, 2009

il



Moduli spaces: Let X be a complex manifold. When C' C X is a compact
complex submanifold, results of Kodaira show that there is a complex-
analytic ‘moduli space’ M consisting of the ‘deformations’ of C' and whose
tangent cone at C' is

TeM ~ H°(C,v) where v =C*(TX)/TC.
Moreover, when H!(C,v) = 0, the space M is smooth at C.
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so that, when k; > 0, one has a (non-canonical) isomorphism
HO(C,v) ~ Sk (C?) @ S*(C?) @ - - - Sk (C?).

Moreover, when k; > —1 for all i, one has H*(C,v) = 0 as well.

In particular, T M carries some extra structure as a vector space, which
implies that M carries some extra structure as a complex manifold.

This idea has been exploited by R. Penrose (and, since, many others) to
construct examples of manifolds M endowed with special structures.
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which allows one to define a conformal structure on M that turns out to
be half-flat.
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Example: When v ~ O(n), the space M has dimension n+1 and its
tangent spaces carry a structure of the form

TpM = H°(P,vp) ~ H°(P,0O(n)) ~S™"(H°(P,0(1))) ~ S™(C?).
In particular, each P(Tp M) contains a rational normal curve
Zp CP(TpM)

that consists of the (projectivized) pure n-th powers in S*(C?).
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Definitions: A rational normal structure (RNS) on a manifold M"*! is a
subbundle
Z C P(TM)
of dimension n+2 such that each fiber Z, = Z NP(T,M) is a rational
normal curve in P(T, M) ~ P".
The dual structure of an RNS Z C P(T'M) is the subbundle
Z* c P(T*M)
that consists of the union of the Z,* C P(TxM), where Z,* is the dual
curve to Z,.
The coframe bundle of Z is the bundle B consisting of isomorphisms
u: T, M — S"(C?)
such that [u](Z;) is the curve of pure n-th powers in IP’(S" ((CQ)).

There is a corresponding notion of real rational normal structure in the
smooth category, where C is replaced by R everywhere.
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When n = 2, a rational normal curve Z, C P(T, M) is simply a nonsin-
gular conic, and the choice of an RNS Z C P(T'M) corresponds exactly to
a choice of conformal structure on M, namely, the one for which Z consists
of the null directions. (In the real category, such a conformal structure is
Lorentzian.)

When n > 2, an RNS does not correspond to a well-studied structure.
However, an RNS Z C P(T'M) is equivalent to the choice of a G,-structure
on M, where

Gn C GL(S™(C?)) ~ GL(n+1,C)
is the group of linear transformations that preserves the cone of pure n-
th powers, which is isomorphic to the quotient of GL(2,C) by its central
cyclic subgroup of order n. Thus, an RNS is a choice of a section of the bun-
dle F/G,, — M, whose fibers are the homogeneous spaces GL(n+1,C)/G,,.
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The general G,-structure on M = C"*! depends (locally, in the sense
of germs) on
(n+1)? —4 = (n — 1)(n+3)
functions of (n+1) variables.
When n > 1, the automorphism group of such a structure is always

finite-dimensional, so, after reducing modulo diffeomorphisms, the general
such structure depends on

n>+n—-4>0
functions of (n+1) variables.

However, it can be argued that the moduli of neighborhoods of a rational
curve in a surface with normal bundle O(n) depends only on functions of 2
variables, so the general RNS cannot arise from such a moduli space.

This raises the question of characterizing those RNSs that arise from such
moduli spaces in terms of differential-geometric invariants of the RNS.



The case n = 2 was investigated thoroughly by Hitchin, making use of
earlier work by E. Cartan and this was well-understood as a manifestation
of Einstein-Weyl geometry by the mid 1980’s.



The case n = 2 was investigated thoroughly by Hitchin, making use of
earlier work by E. Cartan and this was well-understood as a manifestation
of Einstein-Weyl geometry by the mid 1980’s.

In 1987, I decided to look at the case n = 3 and found something that,
at the time, seemed astonishing:



The case n = 2 was investigated thoroughly by Hitchin, making use of
earlier work by E. Cartan and this was well-understood as a manifestation
of Einstein-Weyl geometry by the mid 1980’s.

In 1987, I decided to look at the case n = 3 and found something that,
at the time, seemed astonishing:

If one takes X to be CP? with one point p blown up and lets C be a conic
in CP? that passes through p, then M has dimension 4, the induced G-
structure on M has a (unique) torsion-free connection, and this connection
has irreducibly acting holonomy

H; = G3NSL(4,C) =~ SL(2,0)/Zs,

even though this group does not appear on Berger’s classic list of the irre-
ducible affine holonomies of torsion-free connections!



The case n = 2 was investigated thoroughly by Hitchin, making use of
earlier work by E. Cartan and this was well-understood as a manifestation
of Einstein-Weyl geometry by the mid 1980’s.

In 1987, I decided to look at the case n = 3 and found something that,
at the time, seemed astonishing:

If one takes X to be CP? with one point p blown up and lets C be a conic
in CP? that passes through p, then M has dimension 4, the induced G-
structure on M has a (unique) torsion-free connection, and this connection
has irreducibly acting holonomy

H; = G3NSL(4,C) =~ SL(2,0)/Zs,

even though this group does not appear on Berger’s classic list of the irre-
ducible affine holonomies of torsion-free connections!

This suggested the problem of determining the generality of torsion-free
G3-structures in dimension 4.



The case n = 2 was investigated thoroughly by Hitchin, making use of
earlier work by E. Cartan and this was well-understood as a manifestation
of Einstein-Weyl geometry by the mid 1980’s.

In 1987, I decided to look at the case n = 3 and found something that,
at the time, seemed astonishing:

If one takes X to be CP? with one point p blown up and lets C be a conic
in CP? that passes through p, then M has dimension 4, the induced G-
structure on M has a (unique) torsion-free connection, and this connection
has irreducibly acting holonomy

H; = G3NSL(4,C) =~ SL(2,0)/Zs,

even though this group does not appear on Berger’s classic list of the irre-
ducible affine holonomies of torsion-free connections!

This suggested the problem of determining the generality of torsion-free
Gs-structures in dimension 4. I showed that, modulo diffeomorphisms,
the torsion-free G's-structures depend (locally, in the sense of germs), on 4
functions of 3 variables.
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Now, it is easy to show that the general RNS that arises from a rational
curve C on a surface S with v ~ O(3) comes from a Gs-structure that is
torsion-free.

However, the function count argues that this condition cannot be enough
to characterize such RNS, so not every torsion-free RNS in dimension 4 can
arise this way.

Moreover, the ‘mismatch’ gets worse as n increases:

When n = 4, there are only two distinct torsion-free G4-structures in
dimension 5 and they are both symmetric spaces, while, when n > 4,
there is (up to diffeomorphism) only one torsion-free G,-structure in di-
mension n+1, namely, the flat one.

Meanwhile, there are many inequivalent RNSs that come from the mod-
uli space M™ 1 of a rational curve C on a surface S with v ~ O(n).

It turns out that there is a twistor-theoretic construction of the general
torsion-free G3-structure, but it involves a different kind of moduli space.
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Moduli of rational contact curves: Suppose that X is a holomorphic
contact 3-fold, with contact line bundle L € T*X and let C C X be
an embedded rational curve that is contact (aka Legendrian) and suppose
that n > 1 is such that
C*(L*) ~ O(n).

Then it can be shown that v ~ O(n—1) & O(n—1).

Moreover, not only is M smooth and of dimension 2n near C, but the
subset

Y ={P € M| P is contact and P*(L") ~ O(n)}

is a smooth subvariety of dimension n+1, such that, for all P € Y,

TpY = H°(P,P*(L*)) ~ H°(P,O(n)) ~ S™(C?).

This generalizes the curve-in-a-surface construction as follows: If S is a
surface, let X = P(T'S) = P(T*S). Then X is endowed with a canonical
contact structure L C T*X, and every curve C' C S lifts canonically to
a contact curve C' C X. The moduli space Y in this case is equal to the
moduli space M associated to C' C S.
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Theorem 0: [B—,1987] Every torsion-free Gs-structure is locally con-
structed as the one arising on the moduli of rational contact curves C' in
some contact 3-fold X with C*(L*) ~ O(3).

This raises the question of determining which G, -structures arise on
the moduli spaces of rational contact curves C' in some contact 3-fold X
with C*(L*) ~ O(n) and determining how general these structures are.

Theorem 1: [B—,2008] A RNS Z C P(T'M) arises on a moduli space of
rational contact curves C' C X with C*(L*) ~ O(n) if and only if the dual
structure Z* C P(T*M) is involutive.

Remark: The involutivity of Z* is a system of first-order PDE.
Theorem 2: [B—,2008] Modulo diffeomorphism, the local G,,-structures

on M™*! whose associated dual variety in P(T* M) is involutive depend
on 2n—2 functions of 3 variables.
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The bundle T* M is naturally a symplectic manifold and hence the bun-
dle P(T*M) is naturally a contact manifold. If X is a (local) contact form
on P(T* M), then Aa(dA)™ £ 0.

Definition: A submanifold S C P(T*M) of codimension k < n+1 is said
to be involutive if
S* (A (AN =o0.

for some (and hence any) nonvanishing contact form .
Remark: It is easy to show that, if S*A # 0, then S* (A (dX)" %) # 0.

Involutivity is a first-order PDE on submanifolds of codimension £ <
n+1 and is the natural analog of the (sub-)Legendrian condition for sub-
manifolds of codimension k > n+1.

For Z* C P(T*M), which has codimension n—1, this is the condition
(Z*)* (A (dN)?) =0.
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C-centered coordinates cg, ..., c, on M and p-centered coordinates x,y, z
on X so that

(1) A=dy — zdzx

(2) The curves in M near C are described by the locus W € M x X

of the equations

y=cotcir+-+c, " +a" " F(e,7)

z=c1+ 22+ 4+ nc, 2"+ 2" ((n+1)F(c, ) + 2 Fy(c, 2)).
But then

A=dy —zdx = (1 + x"'HFCO) deg +-- -+ (x" + x"'HFCn) de, ,

and the map [A] : W — P(T*M) thus embeds W as the dual variety Z*,
which is totally unramified on each fiber and hence has its image a rational
normal curve in each T, M. The involutivity follows since Aa(d))? = 0.



Some representation theory. The standard action of SL(2,C) on C?
induces representations of SL(2,C) on Vi = S*(C?) for k > 0, and this
gives the entire list of irreducible representations of SL(2, C).
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Regarding x, 3 as a basis of C2, we have V}, as homogeneous polynomials
in z and y of degree k. There are SL(2, C)-equivariant pairings

(Vp i Vi x Vi — Vipn—2p
for 0 < p < min(m, n) (called ‘transvectants’) that are defined by
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Some representation theory. The standard action of SL(2,C) on C?
induces representations of SL(2,C) on Vi = S*(C?) for k > 0, and this
gives the entire list of irreducible representations of SL(2, C).

Regarding x, 3 as a basis of C2, we have V}, as homogeneous polynomials
in z and y of degree k. There are SL(2, C)-equivariant pairings

<a >;D : Vi X Vi — Vingn—2p
for 0 < p < min(m, n) (called ‘transvectants’) that are defined by

p
(—1)* O u 0" v
— — p p—
(u,v)p = (—1)P(v, u)p kZ:Ok! (p—k)! dxP=F Oy Dk dyp—F"

For example, (u,v)o = uv and (u, v)1 = UgVy — UyVy.
These pairings help make explicit the Clebsch-Gordan formulae

Vm ® Vn ~ Vm-!,-n D VmJ,—n—Q DD V'lm_nl ,
S2(Vi) =~ Vo @ Voma®---,
AQ(Vm)Z‘/Qm—Q@‘/Qm_G@--- .
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see that

(1) & pulls back a contact form to be a multiple of 7, and
(2) For any G, -structure B, the image £(B) is Z*, the dual RNS.
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Some differential geometry: Let M be an (n+1)-manifold with FF — M
the bundle of V,,-valued coframes, i.e., each u € F is an isomorphism u :
T,M — V,,. Then F is endowed with a tautological V,,-valued 1-form
N=10-na" +na™ Y+t Ruoxy Ty
If B C F is a Gy-structure on M, set w = B*n.
Define a map & : F — P(T*M) by &(u) = [(",u)n] = [un]. It is easy to
see that

(1) & pulls back a contact form to be a multiple of 7, and
(2) For any G, -structure B, the image £(B) is Z*, the dual RNS.

Hence, the involutivity condition for Z* becomes wyA(dw,)? =0 on B.
An equivalent condition is that dw,Awn,Arw,_2 = 0, which leads to:

Proposition: A G,-structure B C F has its associated Z* be involutive
if and only if it is an integral manifold of the V3, _o-valued 4-form

T = (dn, (n,m)1), -



Connections and intrinsic torsion: Let B C F be a G,,-structure.



Connections and intrinsic torsion: Let B C F be a GG,-structure. Then
there will exist connection 1-forms p and ¢ on B with values in Vj = C
and Vo ~ s5[(2,C), respectively, so that the first structure equation on B
takes the form

dw=—prw —(p,w)1 + T(wrw),
where T : B — Hom(A?(V,),V,) is the G,-equivariant torsion function
associated to the connection (p, ¢).
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dw=—prw —(p,w)1 + T(wrw),
where T : B — Hom(A?(V,),V,) is the G,-equivariant torsion function
associated to the connection (p, ¢).

Since the choice of connection cannot affect the integrability of Z*, one
sees that
B*Y = <dw, <w,w)1>0 = <T(w/\w), <w,w)1>0 ,
so that B*Y = 0 must represent some number of linear equations on the
intrinsic torsion, i.e., the part of the torsion unaffected by the choice of
connection. (This takes values in H%?(g,,).)



Connections and intrinsic torsion: Let B C F be a GG,-structure. Then
there will exist connection 1-forms p and ¢ on B with values in Vj = C
and Vo ~ s5[(2,C), respectively, so that the first structure equation on B
takes the form

dw=—prw —(p,w)1 + T(wrw),
where T : B — Hom(A?(V,),V,) is the G,-equivariant torsion function
associated to the connection (p, ¢).

Since the choice of connection cannot affect the integrability of Z*, one
sees that
B*Y = <dw, <w,w)1>0 = <T(w/\w), <w,w)1>0 ,
so that B*Y = 0 must represent some number of linear equations on the
intrinsic torsion, i.e., the part of the torsion unaffected by the choice of
connection. (This takes values in H%?(g,,).)

Proposition: The condition B*Y = 0 imposes N = %(n—1)(n—2)(n+5)
linear equations on the intrinsic torsion. The submodule of H%?(g,,) that
corresponds to these equations is isomorphic to Vo ® Vi,_4.



Proposition: (n > 3) If B C F' is a G,-structure that satisfies B*YT = 0,
then there is a unique choice of connection (p, ¢) on B for which

dw, =—(p—ndo) Awn + 2P Awp_2.

The ideal generated by {wy,wn—2, ¢2} is therefore Frobenius and defines a
codimension 3 foliation on Z*.
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codimension 3 foliation on Z*. If X3 is its leaf space, then X inherits a
contact structure from w,, and the double fibration
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exhibits M as a (local) moduli space of rational contact curves in X.
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Theorem: The ideal Z on F' generated by the components of T is involu-
tive, with Cartan characters given by

Sop =51 =82 =0, s3 = 3n—1, and s = n+1 for 4 < k < n+1.



Proposition: (n > 3) If B C F' is a G,-structure that satisfies B*YT = 0,
then there is a unique choice of connection (p, ¢) on B for which

dw, =—(p—ndo) Awn + 2P Awp_2.

The ideal generated by {wy,wn—2, ¢2} is therefore Frobenius and defines a
codimension 3 foliation on Z*. If X3 is its leaf space, then X inherits a
contact structure from w,, and the double fibration

Z*
7T/ \€
M X

exhibits M as a (local) moduli space of rational contact curves in X.

Theorem: The ideal Z on F' generated by the components of T is involu-
tive, with Cartan characters given by

Sop =51 =82 =0, s3 = 3n—1, and s = n+1 for 4 < k < n+1.

Remark: This result does not determine the generality modulo diffeomor-
phism because of the diffeomorphism invariance of the conditions.



The second structure equations: Given a G,,-structure B — M whose
associated dual RNS is involutive, one has the first structure equation
dw=—prw—(p,w)1 + T(wrw),

where T': B — I; C Hom(A2 V), Vn) is the G,,-invariant torsion function
and I1 ~ Vo®V,,_4 is the submodule of allowable torsion for such structures.
This is the first structure equation.
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The second structure equation has the form
dp = R(w Aw),
dp = —3{(d,¢)1 + F(wrw),
where R : B — Hom(AQ(Vn),Vb) and F': B — Hom(AQ(Vn),Vg) are the
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dp = R(w Aw),
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where R : B — Hom(AQ(Vn),Vb) and F': B — Hom(AQ(Vn),Vg) are the
Gp-invariant curvature functions. The Bianchi identity gives

0=-Rwarw)rw— (Flwrw),w); + (DT)(w rw),

and this describes all of the relations between the second order invariants.



The second structure equations: Given a G,,-structure B — M whose
associated dual RNS is involutive, one has the first structure equation

dw=—prw—(p,w)1 + T(wrw),
where T : B — I; C Hom(A?(V,,), V,,) is the Gj-invariant torsion function
and I1 ~ Vo®V,,_4 is the submodule of allowable torsion for such structures.
This is the first structure equation.
The second structure equation has the form

dp = R(w Aw),

dgp = —5{(¢, o1 + F(wrw),
where R : B — Hom(AQ(Vn),Vb) and F': B — Hom(AQ(Vn),Vg) are the
Gn-invariant curvature functions. The Bianchi identity gives

0=-Rwarw)rw— (Flwrw),w); + (DT)(w rw),

and this describes all of the relations between the second order invariants.
Solving this equation shows that the second-order invariants take values in
a module Iy isomorphic to V3 ® Vo, _s5.



Theorem: The structure equations for a G,,-structure B with involutive
dual variety Z*, namely,

dw=—prw—(d,w)1 + T(wrw),
dp = R(wAw),
a6 = —1(, o)1 + F(wnw),
where the first order invariants take values in I1 ~ Vo ®V,,_4 and the second

order invariants take values in Is >~ V3 ® V5,,_5, are involutive, with Cartan
characters

so =0, s1=3n—9, s =3n—95, s3=2n—-2, s4=0.

Consequently, the general such structure, modulo diffeomorphism, depends
on 2n—2 functions of 3 variables.



Theorem: The structure equations for a G,,-structure B with involutive
dual variety Z*, namely,

dw=—prw—(d,w)1 + T(wrw),
dp = R(wAw),
a6 = —1(, o)1 + F(wnw),
where the first order invariants take values in I1 ~ Vo ®V,,_4 and the second

order invariants take values in Is >~ V3 ® V5,,_5, are involutive, with Cartan
characters

so =0, s1=3n—9, s =3n—95, s3=2n—-2, s4=0.

Consequently, the general such structure, modulo diffeomorphism, depends
on 2n—2 functions of 3 variables.

Proof: A calculation.



