INVOLUTIVE RATIONAL NORMAL STRUCTURES

ROBERT L. BRYANT

MATHEMATICAL SCIENCES RESEARCH INSTITUTE

MAY 12, 2009

 $T_C M \simeq H^0(C, \nu)$ where $\nu = C^*(TX)/TC$.

Moreover, when $H^1(C, \nu) = 0$, the space M is smooth at C.

$$T_C M \simeq H^0(C, \nu)$$
 where $\nu = C^*(TX)/TC$.

Moreover, when $H^1(C, \nu) = 0$, the space M is smooth at C.

Moduli of Rational curves: When $C = \mathbb{P}^1$, and dim X = n+1, one has

 $\nu \simeq \mathcal{O}(k_1) \oplus \mathcal{O}(k_2) \oplus \cdots \oplus \mathcal{O}(k_n)$

so that, when $k_i \ge 0$, one has a (non-canonical) isomorphism

$$H^0(C,\nu) \simeq \mathsf{S}^{k_1}(\mathbb{C}^2) \oplus \mathsf{S}^{k_2}(\mathbb{C}^2) \oplus \cdots \mathsf{S}^{k_n}(\mathbb{C}^2).$$

Moreover, when $k_i \ge -1$ for all i, one has $H^1(C, \nu) = 0$ as well.

$$T_C M \simeq H^0(C, \nu)$$
 where $\nu = C^*(TX)/TC$.

Moreover, when $H^1(C, \nu) = 0$, the space M is smooth at C.

Moduli of Rational curves: When $C = \mathbb{P}^1$, and dim X = n+1, one has

$$\nu \simeq \mathcal{O}(k_1) \oplus \mathcal{O}(k_2) \oplus \cdots \oplus \mathcal{O}(k_n)$$

so that, when $k_i \ge 0$, one has a (non-canonical) isomorphism

$$H^0(C,\nu) \simeq \mathsf{S}^{k_1}(\mathbb{C}^2) \oplus \mathsf{S}^{k_2}(\mathbb{C}^2) \oplus \cdots \mathsf{S}^{k_n}(\mathbb{C}^2).$$

Moreover, when $k_i \ge -1$ for all *i*, one has $H^1(C, \nu) = 0$ as well.

In particular, $T_C M$ carries some extra structure as a vector space, which implies that M carries some extra structure as a complex manifold.

$$T_C M \simeq H^0(C, \nu)$$
 where $\nu = C^*(TX)/TC$.

Moreover, when $H^1(C, \nu) = 0$, the space M is smooth at C.

Moduli of Rational curves: When $C = \mathbb{P}^1$, and dim X = n+1, one has

$$\nu \simeq \mathcal{O}(k_1) \oplus \mathcal{O}(k_2) \oplus \cdots \oplus \mathcal{O}(k_n)$$

so that, when $k_i \ge 0$, one has a (non-canonical) isomorphism

$$H^0(C,\nu) \simeq \mathsf{S}^{k_1}(\mathbb{C}^2) \oplus \mathsf{S}^{k_2}(\mathbb{C}^2) \oplus \cdots \mathsf{S}^{k_n}(\mathbb{C}^2).$$

Moreover, when $k_i \ge -1$ for all *i*, one has $H^1(C, \nu) = 0$ as well.

In particular, $T_C M$ carries some extra structure as a vector space, which implies that M carries some extra structure as a complex manifold.

This idea has been exploited by R. Penrose (and, since, many others) to construct examples of manifolds M endowed with special structures.

Example: (Penrose) When $\nu \simeq \mathcal{O}(1) \oplus \mathcal{O}(1)$, the space *M* has dimension 4 and its tangent spaces carry a structure of the form

$$T_P M \simeq \mathbb{C}^2 \otimes H^0(P, \mathcal{O}(1))$$

which allows one to define a conformal structure on ${\cal M}$ that turns out to be half-flat.

Example: (Penrose) When $\nu \simeq \mathcal{O}(1) \oplus \mathcal{O}(1)$, the space *M* has dimension 4 and its tangent spaces carry a structure of the form

$$T_P M \simeq \mathbb{C}^2 \otimes H^0(P, \mathcal{O}(1))$$

which allows one to define a conformal structure on M that turns out to be half-flat.

A specific example is when C is a line in \mathbb{P}^3 , so that $M = \operatorname{Gr}(2, \mathbb{C}^4)$. Deformations of an open neighborhood X of C in \mathbb{P}^3 give rise to conformal structures that are only half-flat.

Example: (Penrose) When $\nu \simeq \mathcal{O}(1) \oplus \mathcal{O}(1)$, the space M has dimension 4 and its tangent spaces carry a structure of the form

$$T_P M \simeq \mathbb{C}^2 \otimes H^0(P, \mathcal{O}(1))$$

which allows one to define a conformal structure on M that turns out to be half-flat.

A specific example is when C is a line in \mathbb{P}^3 , so that $M = \operatorname{Gr}(2, \mathbb{C}^4)$. Deformations of an open neighborhood X of C in \mathbb{P}^3 give rise to conformal structures that are only half-flat.

Example: When $\nu \simeq \mathcal{O}(n)$, the space M has dimension n+1 and its tangent spaces carry a structure of the form

 $T_P M = H^0(P, \nu_P) \simeq H^0(P, \mathcal{O}(n)) \simeq \mathsf{S}^n(H^0(P, \mathcal{O}(1))) \simeq \mathsf{S}^n(\mathbb{C}^2).$

Example: (Penrose) When $\nu \simeq \mathcal{O}(1) \oplus \mathcal{O}(1)$, the space *M* has dimension 4 and its tangent spaces carry a structure of the form

$$T_P M \simeq \mathbb{C}^2 \otimes H^0(P, \mathcal{O}(1))$$

which allows one to define a conformal structure on ${\cal M}$ that turns out to be half-flat.

A specific example is when C is a line in \mathbb{P}^3 , so that $M = \operatorname{Gr}(2, \mathbb{C}^4)$.

Deformations of an open neighborhood X of C in \mathbb{P}^3 give rise to conformal structures that are only half-flat.

Example: When $\nu \simeq \mathcal{O}(n)$, the space M has dimension n+1 and its tangent spaces carry a structure of the form

 $T_P M = H^0(P, \nu_P) \simeq H^0(P, \mathcal{O}(n)) \simeq \mathsf{S}^n(H^0(P, \mathcal{O}(1))) \simeq \mathsf{S}^n(\mathbb{C}^2).$

In particular, each $\mathbb{P}(T_P M)$ contains a rational normal curve

$$\mathbb{Z}_P \subset \mathbb{P}(T_P M)$$

that consists of the (projectivized) pure *n*-th powers in $S^n(\mathbb{C}^2)$.

$$Z \subset \mathbb{P}(TM)$$

of dimension n+2 such that each fiber $Z_x = Z \cap \mathbb{P}(T_x M)$ is a rational normal curve in $\mathbb{P}(T_x M) \simeq \mathbb{P}^n$.

$$Z \subset \mathbb{P}(TM)$$

of dimension n+2 such that each fiber $Z_x = Z \cap \mathbb{P}(T_x M)$ is a rational normal curve in $\mathbb{P}(T_x M) \simeq \mathbb{P}^n$.

The dual structure of an RNS $Z \subset \mathbb{P}(TM)$ is the subbundle

$$Z^* \subset \mathbb{P}(T^*M)$$

that consists of the union of the $Z_x^* \subset \mathbb{P}(T_x^*M)$, where Z_x^* is the dual curve to Z_x .

$$Z \subset \mathbb{P}(TM)$$

of dimension n+2 such that each fiber $Z_x = Z \cap \mathbb{P}(T_x M)$ is a rational normal curve in $\mathbb{P}(T_x M) \simeq \mathbb{P}^n$.

The dual structure of an RNS $Z \subset \mathbb{P}(TM)$ is the subbundle

$$Z^* \subset \mathbb{P}(T^*M)$$

that consists of the union of the $Z_x^* \subset \mathbb{P}(T_x^*M)$, where Z_x^* is the dual curve to Z_x .

The coframe bundle of Z is the bundle B consisting of isomorphisms

$$u: T_x M \to \mathsf{S}^n(\mathbb{C}^2)$$

such that $[u](Z_x)$ is the curve of pure *n*-th powers in $\mathbb{P}(\mathsf{S}^n(\mathbb{C}^2))$.

$$Z \subset \mathbb{P}(TM)$$

of dimension n+2 such that each fiber $Z_x = Z \cap \mathbb{P}(T_x M)$ is a rational normal curve in $\mathbb{P}(T_x M) \simeq \mathbb{P}^n$.

The dual structure of an RNS $Z \subset \mathbb{P}(TM)$ is the subbundle

$$Z^* \subset \mathbb{P}(T^*M)$$

that consists of the union of the $Z_x^* \subset \mathbb{P}(T_x^*M)$, where Z_x^* is the dual curve to Z_x .

The coframe bundle of Z is the bundle B consisting of isomorphisms

$$: T_x M \to \mathsf{S}^n(\mathbb{C}^2)$$

such that $[u](Z_x)$ is the curve of pure *n*-th powers in $\mathbb{P}(\mathsf{S}^n(\mathbb{C}^2))$.

u

There is a corresponding notion of real rational normal structure in the smooth category, where \mathbb{C} is replaced by \mathbb{R} everywhere.

When n = 1, dimension count alone gives $Z = \mathbb{P}(TM)$, so there is only one RNS and it provides no extra structure.

When n = 1, dimension count alone gives $Z = \mathbb{P}(TM)$, so there is only one RNS and it provides no extra structure.

When n = 2, a rational normal curve $Z_x \subset \mathbb{P}(T_x M)$ is simply a nonsingular conic, and the choice of an RNS $Z \subset \mathbb{P}(TM)$ corresponds exactly to a choice of conformal structure on M, namely, the one for which Z consists of the null directions. (In the real category, such a conformal structure is Lorentzian.)

When n = 1, dimension count alone gives $Z = \mathbb{P}(TM)$, so there is only one RNS and it provides no extra structure.

When n = 2, a rational normal curve $Z_x \subset \mathbb{P}(T_x M)$ is simply a nonsingular conic, and the choice of an RNS $Z \subset \mathbb{P}(TM)$ corresponds exactly to a choice of conformal structure on M, namely, the one for which Z consists of the null directions. (In the real category, such a conformal structure is Lorentzian.)

When n > 2, an RNS does not correspond to a well-studied structure. However, an RNS $Z \subset \mathbb{P}(TM)$ is equivalent to the choice of a G_n -structure on M, where

$$G_n \subset \mathrm{GL}(\mathsf{S}^n(\mathbb{C}^2)) \simeq \mathrm{GL}(n+1,\mathbb{C})$$

is the group of linear transformations that preserves the cone of pure *n*th powers, which is isomorphic to the quotient of $\operatorname{GL}(2, \mathbb{C})$ by its central cyclic subgroup of order *n*. Thus, an RNS is a choice of a section of the bundle $F/G_n \to M$, whose fibers are the homogeneous spaces $\operatorname{GL}(n+1, \mathbb{C})/G_n$.

The general G_n -structure on $M = \mathbb{C}^{n+1}$ depends (locally, in the sense of germs) on

$$(n+1)^2 - 4 = (n-1)(n+3)$$

functions of (n+1) variables.

The general $G_n\text{-structure}$ on $M=\mathbb{C}^{n+1}$ depends (locally, in the sense of germs) on

$$(n+1)^2 - 4 = (n-1)(n+3)$$

functions of (n+1) variables.

When n > 1, the automorphism group of such a structure is always finite-dimensional, so, after reducing modulo diffeomorphisms, the general such structure depends on

$$n^2 + n - 4 > 0$$

functions of (n+1) variables.

The general G_n -structure on $M = \mathbb{C}^{n+1}$ depends (locally, in the sense of germs) on

$$(n+1)^2 - 4 = (n-1)(n+3)$$

functions of (n+1) variables.

When n > 1, the automorphism group of such a structure is always finite-dimensional, so, after reducing modulo diffeomorphisms, the general such structure depends on

$$n^2 + n - 4 > 0$$

functions of (n+1) variables.

However, it can be argued that the moduli of neighborhoods of a rational curve in a surface with normal bundle $\mathcal{O}(n)$ depends only on functions of 2 variables, so the general RNS cannot arise from such a moduli space.

The general G_n -structure on $M = \mathbb{C}^{n+1}$ depends (locally, in the sense of germs) on

$$(n+1)^2 - 4 = (n-1)(n+3)$$

functions of (n+1) variables.

When n > 1, the automorphism group of such a structure is always finite-dimensional, so, after reducing modulo diffeomorphisms, the general such structure depends on

$$n^2 + n - 4 > 0$$

functions of (n+1) variables.

However, it can be argued that the moduli of neighborhoods of a rational curve in a surface with normal bundle $\mathcal{O}(n)$ depends only on functions of 2 variables, so the general RNS cannot arise from such a moduli space.

This raises the question of characterizing those RNSs that arise from such moduli spaces in terms of differential-geometric invariants of the RNS.

In 1987, I decided to look at the case n = 3 and found something that, at the time, seemed astonishing:

In 1987, I decided to look at the case n=3 and found something that, at the time, seemed astonishing:

If one takes X to be \mathbb{CP}^2 with one point p blown up and lets C be a conic in \mathbb{CP}^2 that passes through p, then M has dimension 4, the induced G_3 structure on M has a (unique) torsion-free connection, and this connection has irreducibly acting holonomy

$$H_3 = G_3 \cap \mathrm{SL}(4, \mathbb{C}) \simeq \mathrm{SL}(2, C) / \mathbb{Z}_3$$

even though this group does not appear on Berger's classic list of the irreducible affine holonomies of torsion-free connections!

In 1987, I decided to look at the case n=3 and found something that, at the time, seemed astonishing:

If one takes X to be \mathbb{CP}^2 with one point p blown up and lets C be a conic in \mathbb{CP}^2 that passes through p, then M has dimension 4, the induced G_3 structure on M has a (unique) torsion-free connection, and this connection has irreducibly acting holonomy

$$H_3 = G_3 \cap \mathrm{SL}(4, \mathbb{C}) \simeq \mathrm{SL}(2, C) / \mathbb{Z}_3$$

even though this group does not appear on Berger's classic list of the irreducible affine holonomies of torsion-free connections!

This suggested the problem of determining the generality of torsion-free G_3 -structures in dimension 4.

In 1987, I decided to look at the case n=3 and found something that, at the time, seemed astonishing:

If one takes X to be \mathbb{CP}^2 with one point p blown up and lets C be a conic in \mathbb{CP}^2 that passes through p, then M has dimension 4, the induced G_3 structure on M has a (unique) torsion-free connection, and this connection has irreducibly acting holonomy

$$H_3 = G_3 \cap \mathrm{SL}(4, \mathbb{C}) \simeq \mathrm{SL}(2, C) / \mathbb{Z}_3$$

even though this group does not appear on Berger's classic list of the irreducible affine holonomies of torsion-free connections!

This suggested the problem of determining the generality of torsion-free G_3 -structures in dimension 4. I showed that, modulo diffeomorphisms, the torsion-free G_3 -structures depend (locally, in the sense of germs), on 4 functions of 3 variables.

However, the function count argues that this condition cannot be enough to characterize such RNS, so not every torsion-free RNS in dimension 4 can arise this way.

However, the function count argues that this condition cannot be enough to characterize such RNS, so not every torsion-free RNS in dimension 4 can arise this way.

Moreover, the 'mismatch' gets worse as n increases:

However, the function count argues that this condition cannot be enough to characterize such RNS, so not every torsion-free RNS in dimension 4 can arise this way.

Moreover, the 'mismatch' gets worse as n increases:

When n = 4, there are only two distinct torsion-free G_4 -structures in dimension 5 and they are both symmetric spaces, while, when n > 4, there is (up to diffeomorphism) only one torsion-free G_n -structure in dimension n+1, namely, the flat one.

However, the function count argues that this condition cannot be enough to characterize such RNS, so not every torsion-free RNS in dimension 4 can arise this way.

Moreover, the 'mismatch' gets worse as n increases:

When n = 4, there are only two distinct torsion-free G_4 -structures in dimension 5 and they are both symmetric spaces, while, when n > 4, there is (up to diffeomorphism) only one torsion-free G_n -structure in dimension n+1, namely, the flat one.

Meanwhile, there are many inequivalent RNSs that come from the moduli space M^{n+1} of a rational curve C on a surface S with $\nu \simeq \mathcal{O}(n)$.

However, the function count argues that this condition cannot be enough to characterize such RNS, so not every torsion-free RNS in dimension 4 can arise this way.

Moreover, the 'mismatch' gets worse as n increases:

When n = 4, there are only two distinct torsion-free G_4 -structures in dimension 5 and they are both symmetric spaces, while, when n > 4, there is (up to diffeomorphism) only one torsion-free G_n -structure in dimension n+1, namely, the flat one.

Meanwhile, there are many inequivalent RNSs that come from the moduli space M^{n+1} of a rational curve C on a surface S with $\nu \simeq \mathcal{O}(n)$.

It turns out that there is a twistor-theoretic construction of the general torsion-free G_3 -structure, but it involves a different kind of moduli space.

$$C^*(L^*) \simeq \mathcal{O}(n).$$

$$C^*(L^*) \simeq \mathcal{O}(n).$$

Then it can be shown that $\nu \simeq \mathcal{O}(n-1) \oplus \mathcal{O}(n-1)$.

$$C^*(L^*) \simeq \mathcal{O}(n).$$

Then it can be shown that $\nu \simeq \mathcal{O}(n-1) \oplus \mathcal{O}(n-1)$.

Moreover, not only is M smooth and of dimension 2n near C, but the subset

 $Y = \{ P \in M \mid P \text{ is contact and } P^*(L^*) \simeq \mathcal{O}(n) \}$

is a smooth subvariety of dimension n+1, such that, for all $P \in Y$,

$$T_P Y = H^0(P, P^*(L^*)) \simeq H^0(P, \mathcal{O}(n)) \simeq \mathsf{S}^n(\mathbb{C}^2).$$

$$C^*(L^*) \simeq \mathcal{O}(n).$$

Then it can be shown that $\nu \simeq \mathcal{O}(n-1) \oplus \mathcal{O}(n-1)$.

Moreover, not only is M smooth and of dimension 2n near C, but the subset

 $Y = \{ P \in M \mid P \text{ is contact and } P^*(L^*) \simeq \mathcal{O}(n) \}$

is a smooth subvariety of dimension n+1, such that, for all $P \in Y$,

$$T_P Y = H^0(P, P^*(L^*)) \simeq H^0(P, \mathcal{O}(n)) \simeq \mathsf{S}^n(\mathbb{C}^2).$$

This generalizes the curve-in-a-surface construction as follows:

$$C^*(L^*) \simeq \mathcal{O}(n).$$

Then it can be shown that $\nu \simeq \mathcal{O}(n-1) \oplus \mathcal{O}(n-1)$.

Moreover, not only is M smooth and of dimension 2n near C, but the subset

 $Y = \{ P \in M \mid P \text{ is contact and } P^*(L^*) \simeq \mathcal{O}(n) \}$

is a smooth subvariety of dimension n+1, such that, for all $P \in Y$,

$$T_P Y = H^0(P, P^*(L^*)) \simeq H^0(P, \mathcal{O}(n)) \simeq \mathsf{S}^n(\mathbb{C}^2).$$

This generalizes the curve-in-a-surface construction as follows: If S is a surface, let $X = \mathbb{P}(TS) = \mathbb{P}(T^*S)$. Then X is endowed with a canonical contact structure $L \subset T^*X$, and every curve $C \subset S$ lifts canonically to a contact curve $C \subset X$. The moduli space Y in this case is equal to the moduli space M associated to $C \subset S$.
This raises the question of determining which G_n -structures arise on the moduli spaces of rational contact curves C in some contact 3-fold Xwith $C^*(L^*) \simeq \mathcal{O}(n)$ and determining how general these structures are.

This raises the question of determining which G_n -structures arise on the moduli spaces of rational contact curves C in some contact 3-fold Xwith $C^*(L^*) \simeq \mathcal{O}(n)$ and determining how general these structures are.

Theorem 1: [B—,2008] A RNS $Z \subset \mathbb{P}(TM)$ arises on a moduli space of rational contact curves $C \subset X$ with $C^*(L^*) \simeq \mathcal{O}(n)$ if and only if the dual structure $Z^* \subset \mathbb{P}(T^*M)$ is *involutive*.

This raises the question of determining which G_n -structures arise on the moduli spaces of rational contact curves C in some contact 3-fold Xwith $C^*(L^*) \simeq \mathcal{O}(n)$ and determining how general these structures are.

Theorem 1: [B—,2008] A RNS $Z \subset \mathbb{P}(TM)$ arises on a moduli space of rational contact curves $C \subset X$ with $C^*(L^*) \simeq \mathcal{O}(n)$ if and only if the dual structure $Z^* \subset \mathbb{P}(T^*M)$ is *involutive*.

Remark: The involutivity of Z^* is a system of first-order PDE.

This raises the question of determining which G_n -structures arise on the moduli spaces of rational contact curves C in some contact 3-fold Xwith $C^*(L^*) \simeq \mathcal{O}(n)$ and determining how general these structures are.

Theorem 1: [B—,2008] A RNS $Z \subset \mathbb{P}(TM)$ arises on a moduli space of rational contact curves $C \subset X$ with $C^*(L^*) \simeq \mathcal{O}(n)$ if and only if the dual structure $Z^* \subset \mathbb{P}(T^*M)$ is *involutive*.

Remark: The involutivity of Z^* is a system of first-order PDE.

Theorem 2: [B—,2008] Modulo diffeomorphism, the local G_n -structures on M^{n+1} whose associated dual variety in $\mathbb{P}(T^*M)$ is involutive depend on 2n-2 functions of 3 variables.

The bundle T^*M is naturally a symplectic manifold and hence the bundle $\mathbb{P}(T^*M)$ is naturally a contact manifold. If λ is a (local) contact form on $\mathbb{P}(T^*M)$, then $\lambda \wedge (\mathrm{d}\lambda)^n \neq 0$.

The bundle T^*M is naturally a symplectic manifold and hence the bundle $\mathbb{P}(T^*M)$ is naturally a contact manifold. If λ is a (local) contact form on $\mathbb{P}(T^*M)$, then $\lambda \wedge (\mathrm{d}\lambda)^n \neq 0$.

Definition: A submanifold $S \subset \mathbb{P}(T^*M)$ of codimension $k \leq n+1$ is said to be *involutive* if S^{*}

$$^{*}(\lambda \wedge (\mathrm{d}\lambda)^{n-k+1}) = 0.$$

for some (and hence any) nonvanishing contact form λ .

The bundle T^*M is naturally a symplectic manifold and hence the bundle $\mathbb{P}(T^*M)$ is naturally a contact manifold. If λ is a (local) contact form on $\mathbb{P}(T^*M)$, then $\lambda \wedge (d\lambda)^n \neq 0$.

Definition: A submanifold $S \subset \mathbb{P}(T^*M)$ of codimension $k \le n+1$ is said to be *involutive* if

$$S^*(\lambda \wedge (\mathrm{d}\lambda)^{n-k+1}) = 0$$

for some (and hence any) nonvanishing contact form λ .

Remark: It is easy to show that, if $S^*\lambda \neq 0$, then $S^*(\lambda \wedge (d\lambda)^{n-k}) \neq 0$.

The bundle T^*M is naturally a symplectic manifold and hence the bundle $\mathbb{P}(T^*M)$ is naturally a contact manifold. If λ is a (local) contact form on $\mathbb{P}(T^*M)$, then $\lambda \wedge (d\lambda)^n \neq 0$.

Definition: A submanifold $S \subset \mathbb{P}(T^*M)$ of codimension $k \leq n+1$ is said to be *involutive* if

$$S^*(\lambda \wedge (\mathrm{d}\lambda)^{n-k+1}) = 0$$

for some (and hence any) nonvanishing contact form $\lambda.$

Remark: It is easy to show that, if $S^*\lambda \neq 0$, then $S^*(\lambda \wedge (d\lambda)^{n-k}) \neq 0$.

Involutivity is a first-order PDE on submanifolds of codimension $k \leq n+1$ and is the natural analog of the (sub-)Legendrian condition for submanifolds of codimension $k \geq n+1$.

The bundle T^*M is naturally a symplectic manifold and hence the bundle $\mathbb{P}(T^*M)$ is naturally a contact manifold. If λ is a (local) contact form on $\mathbb{P}(T^*M)$, then $\lambda \wedge (d\lambda)^n \neq 0$.

Definition: A submanifold $S \subset \mathbb{P}(T^*M)$ of codimension $k \leq n+1$ is said to be *involutive* if

$$S^*(\lambda \wedge (\mathrm{d}\lambda)^{n-k+1}) = 0$$

for some (and hence any) nonvanishing contact form λ .

Remark: It is easy to show that, if $S^*\lambda \neq 0$, then $S^*(\lambda \wedge (d\lambda)^{n-k}) \neq 0$.

Involutivity is a first-order PDE on submanifolds of codimension $k \leq n+1$ and is the natural analog of the (sub-)Legendrian condition for submanifolds of codimension $k \geq n+1$.

For $Z^* \subset \mathbb{P}(T^*M)$, which has codimension n-1, this is the condition

$$(Z^*)^* \left(\lambda \wedge (\mathrm{d}\lambda)^2 \right) = 0.$$

Theorem: If M is a moduli space of rational contact curves $C \subset X$ with $C^*(L^*) \simeq \mathcal{O}(n)$, then the associated RNS $Z \subset \mathbb{P}(TM)$ has its dual variety $Z^* \subset \mathbb{P}(T^*M)$ be involutive.

Theorem: If M is a moduli space of rational contact curves $C \subset X$ with $C^*(L^*) \simeq \mathcal{O}(n)$, then the associated RNS $Z \subset \mathbb{P}(TM)$ has its dual variety $Z^* \subset \mathbb{P}(T^*M)$ be involutive.

Proof idea: Fix $C \in M$ and choose a point $p \in C \subset X$. One can choose *C*-centered coordinates c_0, \ldots, c_n on *M* and *p*-centered coordinates x, y, z on *X* so that

- (1) $\lambda = \mathrm{d}y z \,\mathrm{d}x$
- (2) The curves in M near C are described by the locus $W \subset M \times X$ of the equations

 $y = c_0 + c_1 x + \dots + c_n x^n + x^{n+1} F(c, x)$

 $z = c_1 + 2c_2x + \dots + nc_n x^{n-1} + x^n ((n+1)F(c,x) + xF_x(c,x)).$

Theorem: If M is a moduli space of rational contact curves $C \subset X$ with $C^*(L^*) \simeq \mathcal{O}(n)$, then the associated RNS $Z \subset \mathbb{P}(TM)$ has its dual variety $Z^* \subset \mathbb{P}(T^*M)$ be involutive.

Proof idea: Fix $C \in M$ and choose a point $p \in C \subset X$. One can choose *C*-centered coordinates c_0, \ldots, c_n on *M* and *p*-centered coordinates x, y, z on *X* so that

- (1) $\lambda = \mathrm{d}y z \,\mathrm{d}x$
- (2) The curves in M near C are described by the locus $W \subset M \times X$ of the equations

 $y = c_0 + c_1 x + \dots + c_n x^n + x^{n+1} F(c, x)$

$$z = c_1 + 2c_2x + \dots + nc_n x^{n-1} + x^n ((n+1)F(c,x) + xF_x(c,x)).$$

But then

$$\lambda = dy - z dx = (1 + x^{n+1} F_{c_0}) dc_0 + \dots + (x^n + x^{n+1} F_{c_n}) dc_n,$$

and the map $[\lambda] : W \to \mathbb{P}(T^*M)$ thus embeds W as the dual variety Z^* , which is totally unramified on each fiber and hence has its image a rational normal curve in each $T_c M$.

Theorem: If M is a moduli space of rational contact curves $C \subset X$ with $C^*(L^*) \simeq \mathcal{O}(n)$, then the associated RNS $Z \subset \mathbb{P}(TM)$ has its dual variety $Z^* \subset \mathbb{P}(T^*M)$ be involutive.

Proof idea: Fix $C \in M$ and choose a point $p \in C \subset X$. One can choose *C*-centered coordinates c_0, \ldots, c_n on *M* and *p*-centered coordinates x, y, z on *X* so that

- (1) $\lambda = \mathrm{d}y z\,\mathrm{d}x$
- (2) The curves in M near C are described by the locus $W \subset M \times X$ of the equations

 $y = c_0 + c_1 x + \dots + c_n x^n + x^{n+1} F(c, x)$

$$z = c_1 + 2c_2x + \dots + nc_n x^{n-1} + x^n ((n+1)F(c,x) + xF_x(c,x)).$$

But then

$$\lambda = dy - z dx = (1 + x^{n+1} F_{c_0}) dc_0 + \dots + (x^n + x^{n+1} F_{c_n}) dc_n,$$

and the map $[\lambda] : W \to \mathbb{P}(T^*M)$ thus embeds W as the dual variety Z^* , which is totally unramified on each fiber and hence has its image a rational normal curve in each $T_c M$. The involutivity follows since $\lambda \wedge (\mathrm{d}\lambda)^2 = 0$.

Some representation theory. The standard action of $SL(2, \mathbb{C})$ on \mathbb{C}^2 induces representations of $SL(2, \mathbb{C})$ on $V_k = S^k(\mathbb{C}^2)$ for $k \ge 0$, and this gives the entire list of irreducible representations of $SL(2, \mathbb{C})$. Some representation theory. The standard action of $SL(2, \mathbb{C})$ on \mathbb{C}^2 induces representations of $SL(2, \mathbb{C})$ on $V_k = \mathsf{S}^k(\mathbb{C}^2)$ for $k \ge 0$, and this gives the entire list of irreducible representations of $SL(2, \mathbb{C})$. Regarding x, y as a basis of \mathbb{C}^2 , we have V_k as homogeneous polynomials

in x and y of degree k. There are $SL(2, \mathbb{C})$ -equivariant pairings

$$\langle,\rangle_p:V_m\times V_n\longrightarrow V_{m+n-2p}$$

for $0 \leq p \leq \min(m,n)$ (called 'transvectants') that are defined by

$$\langle u, v \rangle_p = (-1)^p \langle v, u \rangle_p = \sum_{k=0}^p \frac{(-1)^k}{k! \, (p-k)!} \, \frac{\partial^p u}{\partial x^{p-k} \, \partial y^k} \, \frac{\partial^p v}{\partial x^k \, \partial y^{p-k}}.$$

Some representation theory. The standard action of $SL(2, \mathbb{C})$ on \mathbb{C}^2 induces representations of $SL(2, \mathbb{C})$ on $V_k = \mathsf{S}^k(\mathbb{C}^2)$ for $k \geq 0$, and this gives the entire list of irreducible representations of $SL(2, \mathbb{C})$. Regarding x, y as a basis of \mathbb{C}^2 , we have V_k as homogeneous polynomials

in x and y of degree k. There are $SL(2, \mathbb{C})$ -equivariant pairings

$$\langle,\rangle_p:V_m\times V_n\longrightarrow V_{m+n-2p}$$

for $0 \leq p \leq \min(m,n)$ (called 'transvectants') that are defined by

$$\langle u, v \rangle_p = (-1)^p \langle v, u \rangle_p = \sum_{k=0}^p \frac{(-1)^k}{k! \, (p-k)!} \frac{\partial^p u}{\partial x^{p-k} \, \partial y^k} \frac{\partial^p v}{\partial x^k \, \partial y^{p-k}}.$$

For example, $\langle u, v \rangle_0 = uv$ and $\langle u, v \rangle_1 = u_x v_y - u_y v_x$.

Some representation theory. The standard action of $SL(2, \mathbb{C})$ on \mathbb{C}^2 induces representations of $SL(2, \mathbb{C})$ on $V_k = \mathsf{S}^k(\mathbb{C}^2)$ for $k \geq 0$, and this gives the entire list of irreducible representations of $SL(2, \mathbb{C})$. Regarding x, y as a basis of \mathbb{C}^2 , we have V_k as homogeneous polynomials

in x and y of degree k. There are $SL(2, \mathbb{C})$ -equivariant pairings

$$\langle,\rangle_p:V_m\times V_n\longrightarrow V_{m+n-2p}$$

for $0 \le p \le \min(m, n)$ (called 'transvectants') that are defined by

$$\langle u, v \rangle_p = (-1)^p \langle v, u \rangle_p = \sum_{k=0}^p \frac{(-1)^k}{k! \, (p-k)!} \frac{\partial^p u}{\partial x^{p-k} \, \partial y^k} \frac{\partial^p v}{\partial x^k \, \partial y^{p-k}}.$$

For example, $\langle u, v \rangle_0 = uv$ and $\langle u, v \rangle_1 = u_x v_y - u_y v_x$.

These pairings help make explicit the Clebsch-Gordan formulae

$$V_m \otimes V_n \simeq V_{m+n} \oplus V_{m+n-2} \oplus \cdots \oplus V_{|m-n|},$$

$$S^2(V_m) \simeq V_{2m} \oplus V_{2m-4} \oplus \cdots,$$

$$\Lambda^2(V_m) \simeq V_{2m-2} \oplus V_{2m-6} \oplus \cdots.$$

Some differential geometry: Let M be an (n+1)-manifold with $F \to M$ the bundle of V_n -valued coframes, i.e., each $u \in F$ is an isomorphism $u : T_x M \to V_n$.

$$\eta = \eta_{-n} x^n + \eta_{2-n} x^{n-1} y + \dots + \eta_{n-2} x y^{n-1} + \eta_n y^n.$$

$$\eta = \eta_{-n} x^n + \eta_{2-n} x^{n-1} y + \dots + \eta_{n-2} x y^{n-1} + \eta_n y^n.$$

If $B \subset F$ is a G_n -structure on M, set $\omega = B^* \eta$.

$$\eta = \eta_{-n} x^n + \eta_{2-n} x^{n-1} y + \dots + \eta_{n-2} x y^{n-1} + \eta_n y^n.$$

If $B \subset F$ is a G_n -structure on M, set $\omega = B^* \eta$.

Define a map $\xi:F\to \mathbb{P}(T^*M)$ by $\xi(u)=\left[\langle x^n,u\rangle_n\right]=[u_n].$ It is easy to see that

- (1) ξ pulls back a contact form to be a multiple of $\eta_n,$ and
- (2) For any G_n -structure B, the image $\xi(B)$ is Z^* , the dual RNS.

$$\eta = \eta_{-n} x^n + \eta_{2-n} x^{n-1} y + \dots + \eta_{n-2} x y^{n-1} + \eta_n y^n.$$

If $B \subset F$ is a G_n -structure on M, set $\omega = B^* \eta$.

Define a map $\xi:F\to \mathbb{P}(T^*M)$ by $\xi(u)=\left[\langle x^n,u\rangle_n\right]=[u_n].$ It is easy to see that

- (1) ξ pulls back a contact form to be a multiple of $\eta_n,$ and
- (2) For any G_n -structure B, the image $\xi(B)$ is Z^* , the dual RNS.

Hence, the involutivity condition for Z^* becomes $\omega_n \wedge (\mathrm{d}\omega_n)^2 = 0$ on B.

$$\eta = \eta_{-n} x^n + \eta_{2-n} x^{n-1} y + \dots + \eta_{n-2} x y^{n-1} + \eta_n y^n.$$

If $B \subset F$ is a G_n -structure on M, set $\omega = B^* \eta$.

Define a map $\xi:F\to \mathbb{P}(T^*M)$ by $\xi(u)=\left[\langle x^n,u\rangle_n\right]=[u_n].$ It is easy to see that

- (1) ξ pulls back a contact form to be a multiple of $\eta_n,$ and
- (2) For any G_n -structure B, the image $\xi(B)$ is Z^* , the dual RNS.

Hence, the involutivity condition for Z^* becomes $\omega_n \wedge (\mathrm{d}\omega_n)^2 = 0$ on B.

An equivalent condition is that $d\omega_n \wedge \omega_n \wedge \omega_{n-2} = 0$, which leads to:

$$\eta = \eta_{-n} x^n + \eta_{2-n} x^{n-1} y + \dots + \eta_{n-2} x y^{n-1} + \eta_n y^n$$

If $B \subset F$ is a G_n -structure on M, set $\omega = B^* \eta$.

Define a map $\xi:F\to \mathbb{P}(T^*M)$ by $\xi(u)=\left[\langle x^n,u\rangle_n\right]=[u_n].$ It is easy to see that

- (1) ξ pulls back a contact form to be a multiple of η_n , and
- (2) For any G_n -structure B, the image $\xi(B)$ is Z^* , the dual RNS.
- Hence, the involutivity condition for Z^* becomes $\omega_n \wedge (d\omega_n)^2 = 0$ on B.

An equivalent condition is that $d\omega_n \wedge \omega_n \wedge \omega_{n-2} = 0$, which leads to:

Proposition: A G_n -structure $B \subset F$ has its associated Z^* be involutive if and only if it is an integral manifold of the V_{3n-2} -valued 4-form

$$\Upsilon = \left\langle \mathrm{d}\eta, \langle \eta, \eta \rangle_1 \right\rangle_0.$$

Connections and intrinsic torsion: Let $B \subset F$ be a G_n -structure.

Connections and intrinsic torsion: Let $B \subset F$ be a G_n -structure. Then there will exist connection 1-forms ρ and ϕ on B with values in $V_0 = \mathbb{C}$ and $V_2 \simeq \mathfrak{sl}(2, \mathbb{C})$, respectively, so that the first structure equation on Btakes the form

$$\mathrm{d}\omega = -\rho \wedge \omega - \langle \phi, \omega \rangle_1 + T(\omega \wedge \omega),$$

where $T: B \to \operatorname{Hom}(\Lambda^2(V_n), V_n)$ is the G_n -equivariant torsion function associated to the connection (ρ, ϕ) .

Connections and intrinsic torsion: Let $B \subset F$ be a G_n -structure. Then there will exist connection 1-forms ρ and ϕ on B with values in $V_0 = \mathbb{C}$ and $V_2 \simeq \mathfrak{sl}(2,\mathbb{C})$, respectively, so that the first structure equation on B takes the form

$$\mathrm{d}\omega = -\rho \wedge \omega - \langle \phi, \omega \rangle_1 + T(\omega \wedge \omega),$$

where $T: B \to \operatorname{Hom}(\Lambda^2(V_n), V_n)$ is the G_n -equivariant torsion function associated to the connection (ρ, ϕ) .

Since the choice of connection cannot affect the integrability of Z^* , one sees that

$$B^*\Upsilon = \left\langle \mathrm{d}\omega, \langle \omega, \omega \rangle_1 \right\rangle_0 = \left\langle T(\omega \wedge \omega), \langle \omega, \omega \rangle_1 \right\rangle_0,$$

so that $B^*\Upsilon = 0$ must represent some number of linear equations on the intrinsic torsion, i.e., the part of the torsion unaffected by the choice of connection. (This takes values in $H^{0,2}(\mathfrak{g}_n)$.)

Connections and intrinsic torsion: Let $B \subset F$ be a G_n -structure. Then there will exist connection 1-forms ρ and ϕ on B with values in $V_0 = \mathbb{C}$ and $V_2 \simeq \mathfrak{sl}(2, \mathbb{C})$, respectively, so that the first structure equation on Btakes the form

$$\mathrm{d}\omega = -\rho \wedge \omega - \langle \phi, \omega \rangle_1 + T(\omega \wedge \omega),$$

where $T: B \to \text{Hom}(\Lambda^2(V_n), V_n)$ is the G_n -equivariant torsion function associated to the connection (ρ, ϕ) .

Since the choice of connection cannot affect the integrability of $Z^\ast,$ one sees that

$$B^*\Upsilon = \langle \mathrm{d}\omega, \langle \omega, \omega \rangle_1 \rangle_0 = \langle T(\omega \wedge \omega), \langle \omega, \omega \rangle_1 \rangle_0,$$

so that $B^*\Upsilon = 0$ must represent some number of linear equations on the *intrinsic torsion*, i.e., the part of the torsion unaffected by the choice of connection. (This takes values in $H^{0,2}(\mathfrak{g}_n)$.)

Proposition: The condition $B^*\Upsilon = 0$ imposes $N = \frac{1}{2}(n-1)(n-2)(n+5)$ linear equations on the intrinsic torsion. The submodule of $H^{0,2}(\mathfrak{g}_n)$ that corresponds to these equations is isomorphic to $V_2 \otimes V_{n-4}$.

Proposition: $(n \ge 3)$ If $B \subset F$ is a G_n -structure that satisfies $B^*\Upsilon = 0$, then there is a unique choice of connection (ρ, ϕ) on B for which

$$\mathrm{d}\omega_n = -(\rho - n\,\phi_0) \wedge \omega_n + 2\,\phi_2 \wedge \omega_{n-2}\,.$$

The ideal generated by $\{\omega_n, \omega_{n-2}, \phi_2\}$ is therefore Frobenius and defines a codimension 3 foliation on Z^* .

Proposition: $(n \ge 3)$ If $B \subset F$ is a G_n -structure that satisfies $B^* \Upsilon = 0$, then there is a unique choice of connection (ρ, ϕ) on B for which

$$\mathrm{d}\omega_n = -(\rho - n\,\phi_0) \wedge \omega_n + 2\,\phi_2 \wedge \omega_{n-2}\,.$$

The ideal generated by $\{\omega_n, \omega_{n-2}, \phi_2\}$ is therefore Frobenius and defines a codimension 3 foliation on Z^* . If X^3 is its leaf space, then X inherits a contact structure from ω_n and the double fibration

$$\begin{array}{ccc} & Z^* \\ & \pi_{\swarrow} & \searrow^{\ell} \\ M & & X \end{array}$$

exhibits M as a (local) moduli space of rational contact curves in X.

Proposition: $(n \ge 3)$ If $B \subset F$ is a G_n -structure that satisfies $B^*\Upsilon = 0$, then there is a unique choice of connection (ρ, ϕ) on B for which

$$\mathrm{d}\omega_n = -(\rho - n\,\phi_0) \wedge \omega_n + 2\,\phi_2 \wedge \omega_{n-2}\,.$$

The ideal generated by $\{\omega_n, \omega_{n-2}, \phi_2\}$ is therefore Frobenius and defines a codimension 3 foliation on Z^* . If X^3 is its leaf space, then X inherits a contact structure from ω_n and the double fibration

$$\stackrel{Z^*}{\underset{M}{\overset{\pi}{\overbrace{ }}}} \stackrel{\chi^*}{\underset{X}{\overset{\ell}{\overbrace{ }}}}$$

exhibits M as a (local) moduli space of rational contact curves in X.

Theorem: The ideal \mathcal{I} on F generated by the components of Υ is involutive, with Cartan characters given by

 $s_0 = s_1 = s_2 = 0$, $s_3 = 3n-1$, and $s_k = n+1$ for $4 \le k \le n+1$.

Proposition: $(n \ge 3)$ If $B \subset F$ is a G_n -structure that satisfies $B^*\Upsilon = 0$, then there is a unique choice of connection (ρ, ϕ) on B for which

$$\mathrm{d}\omega_n = -(\rho - n\,\phi_0) \wedge \omega_n + 2\,\phi_2 \wedge \omega_{n-2}\,.$$

The ideal generated by $\{\omega_n, \omega_{n-2}, \phi_2\}$ is therefore Frobenius and defines a codimension 3 foliation on Z^* . If X^3 is its leaf space, then X inherits a contact structure from ω_n and the double fibration

$$\stackrel{Z^*}{\swarrow} \stackrel{\pi}{\searrow} \stackrel{\ell}{\searrow} X$$

exhibits M as a (local) moduli space of rational contact curves in X.

Theorem: The ideal \mathcal{I} on F generated by the components of Υ is involutive, with Cartan characters given by

 $s_0 = s_1 = s_2 = 0$, $s_3 = 3n-1$, and $s_k = n+1$ for $4 \le k \le n+1$.

Remark: This result does not determine the generality modulo diffeomorphism because of the diffeomorphism invariance of the conditions.

The second structure equations: Given a G_n -structure $B \to M$ whose associated dual RNS is involutive, one has the first structure equation

$$d\omega = -\rho \wedge \omega - \langle \phi, \omega \rangle_1 + T(\omega \wedge \omega),$$

where $T: B \to I_1 \subset \text{Hom}(\Lambda^2(V_n), V_n)$ is the G_n -invariant torsion function and $I_1 \simeq V_2 \otimes V_{n-4}$ is the submodule of allowable torsion for such structures. This is the first structure equation. The second structure equations: Given a G_n -structure $B \to M$ whose associated dual RNS is involutive, one has the first structure equation

$$d\omega = -\rho \wedge \omega - \langle \phi, \omega \rangle_1 + T(\omega \wedge \omega),$$

where $T: B \to I_1 \subset \text{Hom}(\Lambda^2(V_n), V_n)$ is the G_n -invariant torsion function and $I_1 \simeq V_2 \otimes V_{n-4}$ is the submodule of allowable torsion for such structures. This is the first structure equation.

The second structure equation has the form

$$d\rho = R(\omega \wedge \omega),$$

$$d\phi = -\frac{1}{2} \langle \phi, \phi \rangle_1 + F(\omega \wedge \omega),$$

where $R: B \to \operatorname{Hom}(\Lambda^2(V_n), V_0)$ and $F: B \to \operatorname{Hom}(\Lambda^2(V_n), V_2)$ are the G_n -invariant curvature functions.
The second structure equations: Given a G_n -structure $B \to M$ whose associated dual RNS is involutive, one has the first structure equation

$$d\omega = -\rho \wedge \omega - \langle \phi, \omega \rangle_1 + T(\omega \wedge \omega),$$

where $T: B \to I_1 \subset \text{Hom}(\Lambda^2(V_n), V_n)$ is the G_n -invariant torsion function and $I_1 \simeq V_2 \otimes V_{n-4}$ is the submodule of allowable torsion for such structures. This is the first structure equation.

The second structure equation has the form

$$d\rho = R(\omega \wedge \omega),$$

$$d\phi = -\frac{1}{2} \langle \phi, \phi \rangle_1 + F(\omega \wedge \omega),$$

where $R: B \to \operatorname{Hom}(\Lambda^2(V_n), V_0)$ and $F: B \to \operatorname{Hom}(\Lambda^2(V_n), V_2)$ are the G_n -invariant curvature functions. The Bianchi identity gives

$$0 = -R(\omega \wedge \omega) \wedge \omega - \langle F(\omega \wedge \omega), \omega \rangle_1 + (DT)(\omega \wedge \omega)$$

and this describes all of the relations between the second order invariants.

The second structure equations: Given a G_n -structure $B \to M$ whose associated dual RNS is involutive, one has the first structure equation

$$d\omega = -\rho \wedge \omega - \langle \phi, \omega \rangle_1 + T(\omega \wedge \omega),$$

where $T: B \to I_1 \subset \text{Hom}(\Lambda^2(V_n), V_n)$ is the G_n -invariant torsion function and $I_1 \simeq V_2 \otimes V_{n-4}$ is the submodule of allowable torsion for such structures. This is the first structure equation.

The second structure equation has the form

$$d\rho = R(\omega \wedge \omega),$$

$$d\phi = -\frac{1}{2} \langle \phi, \phi \rangle_1 + F(\omega \wedge \omega),$$

where $R: B \to \operatorname{Hom}(\Lambda^2(V_n), V_0)$ and $F: B \to \operatorname{Hom}(\Lambda^2(V_n), V_2)$ are the G_n -invariant curvature functions. The Bianchi identity gives

$$0 = -R(\omega \wedge \omega) \wedge \omega - \langle F(\omega \wedge \omega), \omega \rangle_1 + (DT)(\omega \wedge \omega), \omega \rangle_2$$

and this describes all of the relations between the second order invariants. Solving this equation shows that the second-order invariants take values in a module I_2 isomorphic to $V_3 \otimes V_{2n-5}$.

Theorem: The structure equations for a G_n -structure B with involutive dual variety Z^* , namely,

$$d\omega = -\rho \wedge \omega - \langle \phi, \omega \rangle_1 + T(\omega \wedge \omega),$$

$$d\rho = R(\omega \wedge \omega),$$

$$d\phi = -\frac{1}{2} \langle \phi, \phi \rangle_1 + F(\omega \wedge \omega),$$

where the first order invariants take values in $I_1 \simeq V_2 \otimes V_{n-4}$ and the second order invariants take values in $I_2 \simeq V_3 \otimes V_{2n-5}$, are involutive, with Cartan characters

$$s_0 = 0$$
, $s_1 = 3n - 9$, $s_2 = 3n - 5$, $s_3 = 2n - 2$, $s_4 = 0$.

Consequently, the general such structure, modulo diffeomorphism, depends on 2n-2 functions of 3 variables.

Theorem: The structure equations for a G_n -structure B with involutive dual variety Z^* , namely,

$$d\omega = -\rho \wedge \omega - \langle \phi, \omega \rangle_1 + T(\omega \wedge \omega),$$

$$d\rho = R(\omega \wedge \omega),$$

$$d\phi = -\frac{1}{2} \langle \phi, \phi \rangle_1 + F(\omega \wedge \omega),$$

where the first order invariants take values in $I_1 \simeq V_2 \otimes V_{n-4}$ and the second order invariants take values in $I_2 \simeq V_3 \otimes V_{2n-5}$, are involutive, with Cartan characters

$$s_0 = 0$$
, $s_1 = 3n - 9$, $s_2 = 3n - 5$, $s_3 = 2n - 2$, $s_4 = 0$.

Consequently, the general such structure, modulo diffeomorphism, depends on 2n-2 functions of 3 variables.

Proof: A calculation.