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Moduli spaces: Let X be a complex manifold. When C ⊂ X is a compact
complex submanifold, results of Kodaira show that there is a complex-
analytic ‘moduli space’ M consisting of the ‘deformations’ of C and whose
tangent cone at C is

TCM � H0(C, ν) where ν = C∗(TX)/TC.

Moreover, when H1(C, ν) = 0, the space M is smooth at C.

Moduli of Rational curves: When C = P1, and dimX = n+1, one has

ν � O(k1) ⊕O(k2) ⊕ · · · ⊕ O(kn)

so that, when ki ≥ 0, one has a (non-canonical) isomorphism

H0(C, ν) � Sk1(C2) ⊕ Sk2(C2) ⊕ · · ·Skn(C2).

Moreover, when ki ≥ −1 for all i, one has H1(C, ν) = 0 as well.
In particular, TCM carries some extra structure as a vector space, which

implies that M carries some extra structure as a complex manifold.
This idea has been exploited by R. Penrose (and, since, many others) to

construct examples of manifolds M endowed with special structures.
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Example: (Penrose) When ν � O(1)⊕O(1), the space M has dimension 4
and its tangent spaces carry a structure of the form

TP M � C
2 ⊗ H0

(
P,O(1)

)

which allows one to define a conformal structure on M that turns out to
be half-flat.

A specific example is when C is a line in P3, so that M = Gr(2, C4).
Deformations of an open neighborhood X of C in P3 give rise to confor-

mal structures that are only half-flat.

Example: When ν � O(n), the space M has dimension n+1 and its
tangent spaces carry a structure of the form

TP M = H0
(
P, νP

)
� H0

(
P,O(n)

)
� Sn

(
H0

(
P,O(1)

))
� Sn(C2).

In particular, each P(TP M) contains a rational normal curve

ZP ⊂ P(TP M)

that consists of the (projectivized) pure n-th powers in Sn(C2).
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Definitions: A rational normal structure (RNS) on a manifold Mn+1 is a
subbundle

Z ⊂ P(TM)
of dimension n+2 such that each fiber Zx = Z ∩ P(TxM) is a rational
normal curve in P(TxM) � Pn.

The dual structure of an RNS Z ⊂ P(TM) is the subbundle

Z∗ ⊂ P(T ∗M)

that consists of the union of the Zx
∗ ⊂ P(T ∗

x M), where Zx
∗ is the dual

curve to Zx.

The coframe bundle of Z is the bundle B consisting of isomorphisms

u : TxM → Sn(C2)

such that [u](Zx) is the curve of pure n-th powers in P
(
Sn(C2)

)
.

There is a corresponding notion of real rational normal structure in the
smooth category, where C is replaced by R everywhere.
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When n = 1, dimension count alone gives Z = P(TM), so there is only
one RNS and it provides no extra structure.

When n = 2, a rational normal curve Zx ⊂ P(TxM) is simply a nonsin-
gular conic, and the choice of an RNS Z ⊂ P(TM) corresponds exactly to
a choice of conformal structure on M , namely, the one for which Z consists
of the null directions. (In the real category, such a conformal structure is
Lorentzian.)

When n > 2, an RNS does not correspond to a well-studied structure.
However, an RNS Z ⊂ P(TM) is equivalent to the choice of a Gn-structure
on M , where

Gn ⊂ GL
(
Sn(C2)

)
� GL(n+1, C)

is the group of linear transformations that preserves the cone of pure n-
th powers, which is isomorphic to the quotient of GL(2, C) by its central
cyclic subgroup of order n. Thus, an RNS is a choice of a section of the bun-
dle F/Gn → M , whose fibers are the homogeneous spaces GL(n+1, C)/Gn.
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Some numerology:

The general Gn-structure on M = Cn+1 depends (locally, in the sense
of germs) on

(n+1)2 − 4 = (n − 1)(n+3)
functions of (n+1) variables.

When n > 1, the automorphism group of such a structure is always
finite-dimensional, so, after reducing modulo diffeomorphisms, the general
such structure depends on

n2 + n − 4 > 0

functions of (n+1) variables.

However, it can be argued that the moduli of neighborhoods of a rational
curve in a surface with normal bundle O(n) depends only on functions of 2
variables, so the general RNS cannot arise from such a moduli space.

This raises the question of characterizing those RNSs that arise from such
moduli spaces in terms of differential-geometric invariants of the RNS.
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The case n = 2 was investigated thoroughly by Hitchin, making use of
earlier work by É. Cartan and this was well-understood as a manifestation
of Einstein-Weyl geometry by the mid 1980’s.

In 1987, I decided to look at the case n = 3 and found something that,
at the time, seemed astonishing:

If one takes X to be CP2 with one point p blown up and lets C be a conic
in CP2 that passes through p, then M has dimension 4, the induced G3-
structure on M has a (unique) torsion-free connection, and this connection
has irreducibly acting holonomy

H3 = G3 ∩ SL(4, C) � SL(2, C)/Z3,

even though this group does not appear on Berger’s classic list of the irre-
ducible affine holonomies of torsion-free connections!

This suggested the problem of determining the generality of torsion-free
G3-structures in dimension 4. I showed that, modulo diffeomorphisms,
the torsion-free G3-structures depend (locally, in the sense of germs), on 4
functions of 3 variables.
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Now, it is easy to show that the general RNS that arises from a rational
curve C on a surface S with ν � O(3) comes from a G3-structure that is
torsion-free.

However, the function count argues that this condition cannot be enough
to characterize such RNS, so not every torsion-free RNS in dimension 4 can
arise this way.

Moreover, the ‘mismatch’ gets worse as n increases:
When n = 4, there are only two distinct torsion-free G4-structures in

dimension 5 and they are both symmetric spaces, while, when n > 4,
there is (up to diffeomorphism) only one torsion-free Gn-structure in di-
mension n+1, namely, the flat one.

Meanwhile, there are many inequivalent RNSs that come from the mod-
uli space Mn+1 of a rational curve C on a surface S with ν � O(n).

It turns out that there is a twistor-theoretic construction of the general
torsion-free G3-structure, but it involves a different kind of moduli space.
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Moduli of rational contact curves: Suppose that X is a holomorphic
contact 3-fold, with contact line bundle L ⊂ T ∗X and let C ⊂ X be
an embedded rational curve that is contact (aka Legendrian) and suppose
that n ≥ 1 is such that

C∗(L∗) � O(n).
Then it can be shown that ν � O(n−1) ⊕O(n−1).
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surface, let X = P(TS) = P(T ∗S). Then X is endowed with a canonical
contact structure L ⊂ T ∗X, and every curve C ⊂ S lifts canonically to
a contact curve C ⊂ X. The moduli space Y in this case is equal to the
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Theorem 0: [B—,1987] Every torsion-free G3-structure is locally con-
structed as the one arising on the moduli of rational contact curves C in
some contact 3-fold X with C∗(L∗) � O(3).

This raises the question of determining which Gn-structures arise on
the moduli spaces of rational contact curves C in some contact 3-fold X
with C∗(L∗) � O(n) and determining how general these structures are.

Theorem 1: [B—,2008] A RNS Z ⊂ P(TM) arises on a moduli space of
rational contact curves C ⊂ X with C∗(L∗) � O(n) if and only if the dual
structure Z∗ ⊂ P(T ∗M) is involutive.

Remark: The involutivity of Z∗ is a system of first-order PDE.

Theorem 2: [B—,2008] Modulo diffeomorphism, the local Gn-structures
on Mn+1 whose associated dual variety in P(T ∗M) is involutive depend
on 2n−2 functions of 3 variables.



Theorem 0: [B—,1987] Every torsion-free G3-structure is locally con-
structed as the one arising on the moduli of rational contact curves C in
some contact 3-fold X with C∗(L∗) � O(3).

This raises the question of determining which Gn-structures arise on
the moduli spaces of rational contact curves C in some contact 3-fold X
with C∗(L∗) � O(n) and determining how general these structures are.

Theorem 1: [B—,2008] A RNS Z ⊂ P(TM) arises on a moduli space of
rational contact curves C ⊂ X with C∗(L∗) � O(n) if and only if the dual
structure Z∗ ⊂ P(T ∗M) is involutive.

Remark: The involutivity of Z∗ is a system of first-order PDE.

Theorem 2: [B—,2008] Modulo diffeomorphism, the local Gn-structures
on Mn+1 whose associated dual variety in P(T ∗M) is involutive depend
on 2n−2 functions of 3 variables.



Theorem 0: [B—,1987] Every torsion-free G3-structure is locally con-
structed as the one arising on the moduli of rational contact curves C in
some contact 3-fold X with C∗(L∗) � O(3).

This raises the question of determining which Gn-structures arise on
the moduli spaces of rational contact curves C in some contact 3-fold X
with C∗(L∗) � O(n) and determining how general these structures are.

Theorem 1: [B—,2008] A RNS Z ⊂ P(TM) arises on a moduli space of
rational contact curves C ⊂ X with C∗(L∗) � O(n) if and only if the dual
structure Z∗ ⊂ P(T ∗M) is involutive.

Remark: The involutivity of Z∗ is a system of first-order PDE.

Theorem 2: [B—,2008] Modulo diffeomorphism, the local Gn-structures
on Mn+1 whose associated dual variety in P(T ∗M) is involutive depend
on 2n−2 functions of 3 variables.



Theorem 0: [B—,1987] Every torsion-free G3-structure is locally con-
structed as the one arising on the moduli of rational contact curves C in
some contact 3-fold X with C∗(L∗) � O(3).

This raises the question of determining which Gn-structures arise on
the moduli spaces of rational contact curves C in some contact 3-fold X
with C∗(L∗) � O(n) and determining how general these structures are.

Theorem 1: [B—,2008] A RNS Z ⊂ P(TM) arises on a moduli space of
rational contact curves C ⊂ X with C∗(L∗) � O(n) if and only if the dual
structure Z∗ ⊂ P(T ∗M) is involutive.

Remark: The involutivity of Z∗ is a system of first-order PDE.

Theorem 2: [B—,2008] Modulo diffeomorphism, the local Gn-structures
on Mn+1 whose associated dual variety in P(T ∗M) is involutive depend
on 2n−2 functions of 3 variables.



Theorem 0: [B—,1987] Every torsion-free G3-structure is locally con-
structed as the one arising on the moduli of rational contact curves C in
some contact 3-fold X with C∗(L∗) � O(3).

This raises the question of determining which Gn-structures arise on
the moduli spaces of rational contact curves C in some contact 3-fold X
with C∗(L∗) � O(n) and determining how general these structures are.

Theorem 1: [B—,2008] A RNS Z ⊂ P(TM) arises on a moduli space of
rational contact curves C ⊂ X with C∗(L∗) � O(n) if and only if the dual
structure Z∗ ⊂ P(T ∗M) is involutive.

Remark: The involutivity of Z∗ is a system of first-order PDE.

Theorem 2: [B—,2008] Modulo diffeomorphism, the local Gn-structures
on Mn+1 whose associated dual variety in P(T ∗M) is involutive depend
on 2n−2 functions of 3 variables.



Involutivity in P(T ∗M): Let M be an (n+1)-manifold.

The bundle T ∗M is naturally a symplectic manifold and hence the bun-
dle P(T ∗M) is naturally a contact manifold. If λ is a (local) contact form
on P(T ∗M), then λ∧(dλ)n 	= 0.

Definition: A submanifold S ⊂ P(T ∗M) of codimension k ≤ n+1 is said
to be involutive if

S∗(λ ∧ (dλ)n−k+1
)

= 0.

for some (and hence any) nonvanishing contact form λ.

Remark: It is easy to show that, if S∗λ 	= 0, then S∗(λ∧(dλ)n−k
)
	= 0.

Involutivity is a first-order PDE on submanifolds of codimension k ≤
n+1 and is the natural analog of the (sub-)Legendrian condition for sub-
manifolds of codimension k ≥ n+1.

For Z∗ ⊂ P(T ∗M), which has codimension n−1, this is the condition

(Z∗)∗
(
λ ∧ (dλ)2

)
= 0.
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Theorem: If M is a moduli space of rational contact curves C ⊂ X
with C∗(L∗) � O(n), then the associated RNS Z ⊂ P(TM) has its dual
variety Z∗ ⊂ P(T ∗M) be involutive.
Proof idea: Fix C ∈ M and choose a point p ∈ C ⊂ X. One can choose
C-centered coordinates c0, . . . , cn on M and p-centered coordinates x, y, z
on X so that

(1) λ = dy − z dx
(2) The curves in M near C are described by the locus W ⊂ M × X

of the equations

y = c0 + c1 x + · · ·+ cn xn + xn+1F (c, x)

z = c1 + 2c2x + · · ·+ ncn xn−1 + xn
(
(n+1)F (c, x) + xFx(c, x)

)

But then

λ = dy − z dx =
(
1 + xn+1Fc0

)
dc0 + · · ·+

(
xn + xn+1Fcn

)
dcn .

and the map [λ] : W → P(T ∗M) thus embeds W as the dual variety Z∗,
which is totally unramified on each fiber and hence has its image a rational
normal curve in each TcM . The involutivity follows since λ∧(dλ)2 = 0.
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Some representation theory. The standard action of SL(2, C) on C
2

induces representations of SL(2, C) on Vk = Sk(C2) for k ≥ 0, and this
gives the entire list of irreducible representations of SL(2, C).

Regarding x, y as a basis of C2, we have Vk as homogeneous polynomials
in x and y of degree k. There are SL(2, C)-equivariant pairings

〈, 〉p : Vm × Vn −→ Vm+n−2p

for 0 ≤ p ≤ min(m, n) (called ‘transvectants’) that are defined by

〈u, v〉p = (−1)p〈v, u〉p =
p∑

k=0

(−1)k

k! (p−k)!
∂p u

∂xp−k ∂yk

∂p v

∂xk ∂yp−k
.

For example, 〈u, v〉0 = uv and 〈u, v〉1 = uxvy − uyvx.
These pairings help make explicit the Clebsch-Gordan formulae

Vm ⊗ Vn � Vm+n ⊕ Vm+n−2 ⊕ · · · ⊕ V|m−n| ,

S2(Vm) � V2m ⊕ V2m−4 ⊕ · · · ,

Λ2(Vm) � V2m−2 ⊕ V2m−6 ⊕ · · · .
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Some differential geometry: Let M be an (n+1)-manifold with F → M
the bundle of Vn-valued coframes, i.e., each u ∈ F is an isomorphism u :
TxM → Vn. Then F is endowed with a tautological Vn-valued 1-form

η = η−n xn + η2−n xn−1y + · · ·+ ηn−2 xyn−1 + ηn yn.

If B ⊂ F is a Gn-structure on M , set ω = B∗η.

Define a map ξ : F → P(T ∗M) by ξ(u) =
[
〈xn, u〉n

]
= [un]. It is easy to

see that
(1) ξ pulls back a contact form to be a multiple of ηn, and
(2) For any Gn-structure B, the image ξ(B) is Z∗, the dual RNS.
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Connections and intrinsic torsion: Let B ⊂ F be a Gn-structure.Then
there will exist connection 1-forms ρ and φ on B with values in V0 = C

and V2 � sl(2, C), respectively, so that the first structure equation on B
takes the form

dω = −ρ∧ ω − 〈φ, ω〉1 + T (ω ∧ω),
where T : B → Hom

(
Λ2(Vn), Vn

)
is the Gn-equivariant torsion function

associated to the connection (ρ, φ).

Since the choice of connection cannot affect the integrability of Z∗, one
sees that

B∗Υ =
〈
dω, 〈ω, ω〉1

〉
0

=
〈
T (ω ∧ ω), 〈ω, ω〉1

〉
0
,

so that B∗Υ = 0 must represent some number of linear equations on the
intrinsic torsion, i.e., the part of the torsion unaffected by the choice of
connection. (This takes values in H0,2(gn).)

Proposition: The condition B∗Υ = 0 imposes N = 1
2(n−1)(n−2)(n+5)

linear equations on the intrinsic torsion. The submodule of H0,2(gn) that
corresponds to these equations is isomorphic to V2 ⊗ Vn−4.
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Proposition: (n ≥ 3) If B ⊂ F is a Gn-structure that satisfies B∗Υ = 0,
then there is a unique choice of connection (ρ, φ) on B for which

dωn = −(ρ − n φ0) ∧ ωn + 2 φ2 ∧ωn−2 .

The ideal generated by {ωn, ωn−2, φ2} is therefore Frobenius and defines a
codimension 3 foliation on Z∗. If X3 is its leaf space, then X inherits a
contact structure from ωn and the double fibration

Z∗

π↙ ↘


M X

exhibits M as a (local) moduli space of rational contact curves in X.

Theorem: The ideal I on F generated by the components of Υ is involu-
tive, with Cartan characters given by

s0 = s1 = s2 = 0, s3 = 3n−1, and sk = n+1 for 4 ≤ k ≤ n+1.

Remark: This result does not determine the generality modulo diffeomor-
phism because of the diffeomorphism invariance of the conditions.
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The second structure equations: Given a Gn-structure B → M whose
associated dual RNS is involutive, one has the first structure equation

dω = −ρ∧ ω − 〈φ, ω〉1 + T (ω ∧ω),

where T : B → I1 ⊂ Hom
(
Λ2(Vn), Vn

)
is the Gn-invariant torsion function

and I1 � V2⊗Vn−4 is the submodule of allowable torsion for such structures.
This is the first structure equation.

The second structure equation has the form
dρ = R(ω ∧ω),

dφ = −1
2
〈φ, φ〉1 + F (ω ∧ ω),

where R : B → Hom
(
Λ2(Vn), V0

)
and F : B → Hom

(
Λ2(Vn), V2

)
are the

Gn-invariant curvature functions. The Bianchi identity gives

0 = −R(ω ∧ω) ∧ ω − 〈F (ω ∧ω), ω〉1 + (DT )(ω ∧ ω),

and this describes all of the relations between the second order invariants.
Solving this equation shows that the second-order invariants take values in
a module I2 isomorphic to V3 ⊗ V2n−5.
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Theorem: The structure equations for a Gn-structure B with involutive
dual variety Z∗, namely,

dω = −ρ∧ ω − 〈φ, ω〉1 + T (ω ∧ ω),

dρ = R(ω ∧ω),

dφ = −1
2 〈φ, φ〉1 + F (ω ∧ω),

where the first order invariants take values in I1 � V2⊗Vn−4 and the second
order invariants take values in I2 � V3 ⊗V2n−5, are involutive, with Cartan
characters

s0 = 0, s1 = 3n−9, s2 = 3n−5, s3 = 2n−2, s4 = 0.

Consequently, the general such structure, modulo diffeomorphism, depends
on 2n−2 functions of 3 variables.

Proof: A calculation.
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