

Home

Submissions

Reviews

Volumes

RGMIA

About Us

Volume 2, Issue 2, Article 16

Subharmonic Functions and their Riesz Measure

Raphaele Supper, Authors:

Keywords: Subharmonic functions, Order of growth, Riesz

measure

Date Received: 30/08/00 **Date Accepted:** 22/01/01

Subject Codes: 31A05,31B05,26D15,28A75

Editors: Alberto Fiorenza,

Abstract:

For subharmonic functions u in $I\!\!R^N$, of Riesz measure μ , the growth of the function $s\mapsto \mu(s)=\int_{|\zeta|\le s}d\mu(\zeta)$ $(s\ge 0)$ is described and

compared with the growth of u. It is also shown that, if

 $\int_{\mathbb{R}^N} u^+(x) \left[-\varphi'(|x|^2)\right] dx < +\infty$ for some decreasing C^1 function

 $arphi \geq 0$, then $\int_{I\!\!R^N} {1\over |\zeta|^2} \, arphi(|\zeta|^2+1) \, d\mu(\zeta) < +\infty$. Given two

subharmonic functions u_1 and u_2 , of Riesz measures μ_1 and μ_2 , with a

growth like $u_i(x) \leq A + B|x|^{\gamma} \ \forall x \in \mathbb{R}^N$ (i = 1, 2), it is proved that

 $\mu_1 + \mu_2$ is not necessarily the Riesz measure of any subharmonic function

u with such a growth as $u(x) \leq A' + B' |x|^{\gamma} \, \forall x \in I\!\!R^N$ (here A>0,

A' > 0 and 0 < B' < 2B).

Download Screen PDF

Download Print PDF

Send this article to a friend

Print this page

search [advanced search] copyright 2003 terms and conditions login