

Volume 4, Issue 2, Article 25

The Ratio Between the Tail of a Series and its Approximating Integral

Authors:	Graham Jameson,
Keywords:	Series, Tail, Ratio, Monotonic, Zeta function.
Date Received:	20/09/02
Date Accepted:	10/02/03
Subject Codes:	26D15,26D10,26A48.
Editors:	Alberto Fiorenza,
Abstract:	For a strictly positive function $f(x)$, let $S(n) = \sum_{k=n}^{\infty} f(k)$ and $I(x) = \int_{x}^{\infty} f(t)dt$, assumed convergent. If $f'(x)/f(x)$ is increasing

For a strictly positive function f(x), let $S(n) = \sum_{k=n} f(k)$ and $I(x) = \int_x^{\infty} f(t)dt$, assumed convergent. If f'(x)/f(x) is increasing, then S(n)/I(n) is decreasing and S(n+1)/I(n) is increasing. If f''(x)/f(x) is increasing, then $S(n)/I(n-\frac{1}{2})$ is decreasing. Under suitable conditions, analogous results are obtained for the ``continuous tail'' defined by $S(x) = \sum_{n=0}^{\infty} f(x+n)$: these results apply, in particular, to the Hurwitz zeta function.

Download Screen PDF Download Print PDF

- Send this article to a friend
- Print this page