

Volume 5, Issue 1, Article 14

The Boundary of Weighted Analytic Centers for Linear Matrix Inequalities

Authors:
Keywords:
Date Received:
Date Accepted:

Subject Codes:

Shafiu Jibrin, James W. Swift,
Linear matrix inequalities, Analytic center, Central path, Semidefinite programming.
28/10/03
03/02/04
90C22, 15A39, 49M15, 90C53

Fuzhen Zhang,

Abstract:

Editors:

We study the boundary of the region of weighted analytic centers for linear matrix inequality constraints. Let be the convex subset of \mathbb{R}^n defined by q

simultaneous linear matrix inequalities (LMIs)

$$A^{(j)}(x) := A_0^{(j)} + \sum_{i=1}^n x_i A_i^{(j)} \succ 0, \quad j = 1, 2, \dots, q,$$

where $A_i^{(j)}$ are symmetric matrices and $x \in \mathbb{R}^n$. Given a strictly positive

vector $\omega = (\omega_1, \omega_2, \ldots, \omega_q)$, the weighted analytic center $x_{ac}(\omega)$ is

the minimizer of the strictly convex function

$$\phi_{\omega}(x) := \sum_{j=1}^{q} \omega_j \log \det[A^{(j)}(x)]^{-1}$$

over \mathcal{R} . The region of weighted analytic centers, \mathcal{W} , is a subset of \mathcal{R} . We give several examples for which \mathcal{W} has interesting topological properties. We show that every point on a central path in semidefinite programming is a weighted analytic center.

We introduce the concept of the *frame* of \mathcal{W} , which contains the boundary points of \mathcal{W} which are not boundary points of \mathcal{R} . The frame has the same dimension as the boundary of \mathcal{W} and is therefore easier to compute than \mathcal{W} itself. Furthermore, we develop a Newton-based algorithm that uses a Monte Carlo technique to compute the frame points of \mathcal{W} as well as the boundary points of \mathcal{W} that are also boundary points of \mathcal{R} .

