

Volume 1, Issue 2, Article 14

Regularity results for vector fields of bounded distortion and applications

Authors:	Alberto Fiorenza, Flavia Giannetti,				
Keywords:	Reverse Inequalities, Finite Distortion Vector Fields, Div-Curl Vector Fields, Elliptic Partial Differential Equations				
Date Received:	17/01/00				
Date Accepted:	04/04/00				
Subject Codes:	35J60,26D15.				
Editors:	Saburou Saitoh,				

Abstract:

In this paper we prove higher integrability results for vector fields B, E,

 $(B,E) \in L^{2-\epsilon}(\Omega, n) \times L^{2-\epsilon}(\Omega, n), \ \varepsilon$ small, such that

div B = 0, curl E = 0 satisfying a ``reverse" inequality of the type

$$|B|^{2} + |E|^{2} \leq \left(K + \frac{1}{K}\right) \langle B, E \rangle + |F|^{2}$$

with $K \geq 1$ and $F \in L^{r}(\Omega, n), r > 2 - \varepsilon$. Applications to the

theory of quasiconformal mappings and partial differential equations are given. In particular, we prove regularity results for very weak solutions of equations of the type

div
$$a(x, \nabla u) = \operatorname{div} F$$
.

If
$$|a(x,z)|^2+|z|^2\leq (K+1/K)\,\langle a(x,z),z
angle$$
 , in the

homogeneous case, our method provides a new proof of the regularity result

$$u \in W^{1,2-\varepsilon}_{loc}(\Omega) \Rightarrow u \in W^{1,2+\varepsilon}_{loc}(\Omega)$$

where \mathcal{E} is sufficiently small. A result of higher integrability for functions verifying a reverse integral inequality is used, and its optimality is proved.

search	[advanced search]	copyright 2003	terms and conditions	login