

journal of inequalities in pure and applied mathematics

Volumes

Reviews

About Us

Volume 3, Issue 1, Article 6

Submissions

Norms of Certain Operators on Weighted \$\ell_p\$Spaces and Lorentz Sequence Spaces

RGMIA

Authors:	Graham Jameson, R. Lashkaripour,
Keywords:	Hardy's inequality, Hilbert's inequality, Norms of operators.
Date Received:	07/05/01
Date Accepted:	21/09/01
Subject Codes:	26D15,15A60,47B37.
Editors:	Bohumir Opic,
Abstract:	The problem addressed is the exact determination of the norms of the classical Hilbert, Copson and averaging operators on weighted ℓ_p spaces
	and the corresponding Lorentz sequence spaces $d(w,p)$, with the power
	weighting sequence $w_n = n^{-lpha}$ or the variant defined by

 $w_1 + \cdots + w_n = n^{1-\alpha}$. Exact values are found in each case except for the averaging operator with $w_n = n^{-\alpha}$, for which estimates deriving from various different methods are obtained and compared.

Download Screen PDF

- Send this article to a friend
- Print this page