

Home

Editors

Submissions

Reviews

Volumes

RGMIA

About Us

Volume 5, Issue 1, Article 4

On the Heisenberg-Pauli-Weyl Inequality

Authors: John Michael Rassias,

Keywords: Pascal Identity, Plancherel-Parseval-Rayleigh

Identity, Lagrange Identity, Gaussian function, Fourier transform, Moment, Bessel equation, Hermite polynomials, Heisenberg-Pauli-Weyl

Inequality.

Date Received: 02/01/03

Date Accepted: 04/03/03

Subject Codes: Primary: 26Xxx; Secondary: 42Xxx, 60Xxx,

Editors: Alexander G. Babenko,

Abstract: In 1927, W. Heisenberg demonstrated the impossibility of specifying

simultaneously the position and the momentum of an electron within an atom. The following result named, *Heisenberg inequality*, is not actually due to Heisenberg. In 1928, according to H. Weyl this result is due to W. Pauli. The said inequality states, as follows: Assume that $f: \mathbb{R} \to \mathbb{C}$ is a complex

valued function of a random real variable x such that $f \in L^2(\mathbb{R})$. Then the

product of the second moment of the random real $\,x\,$ for $\,|f\,|^2\,$ and the second

moment of the random real $\,\xi\,$ for $\left|\hat{f}\right|^2$ is at least $\,E_{|f|^2}\,/4\pi$, where $\,\hat{f}\,$ is

the Fourier transform of f , such that $\hat{f}\left(\xi\right)=\int_{R}e^{-2i\pi\xi x}f\left(x\right)dx$ and

 $f\left(x
ight)=\int_{R}e^{2i\pi\xi x}\hat{f}\left(\xi
ight)d\xi,\;i=\sqrt{-1}\;\mathrm{and}\;E_{|f|^{2}}=\int_{R}\left|f\left(x
ight)
ight|^{2}dx.\;\mathrm{In}$

this paper we generalize the afore-mentioned result to the higher moments for L^2 functions f and establish the Heisenberg-Pauli-Weyl inequality.

Download Screen PDF

Download Print PDF

Send this article to a friend

Print this page

search [advanced search] copyright 2003 terms and conditions login