

Volume 6, Issue 2, Article 53

Rate of Growth of Polynomials Not Vanishing Inside a Circle

Authors:	Robert B. Gardner, Narendra K. Govil, Srinath R. Musukula,
Keywords:	Polynomials, Restricted zeros, Growth, Inequalities.
Date Received:	04/01/05
Date Accepted:	15/04/05
Subject Codes:	30A10, 30C10, 30E10, 30C15.
Editors:	Ram N. Mohapatra,

Abstract:

A well known result due to Ankeny and Rivlin [1] states that if $p(z) = \sum_{\nu=0}^{n} a_{\nu} z^{\nu}$ is a polynomial of degree n satisfying $p(z) \neq 0$ for

|z| < 1 then for $R \ge 1$

$$\max_{|z|=R} |p(z)| \le \frac{R^n + 1}{2} \max_{|z|=1} |p(z)|.$$

It was proposed by late Professor R.P. Boas, Jr. to obtain an inequality analogous to this inequality for polynomials having no zeros in $|z| < K, \ K > 0$. In this paper, we obtain some results in this direction, by considering polynomials of the form $p(z) = a_0 + \sum_{\nu=t}^n a_{\nu} z^{\nu}, \ 1 \le t \le n$ which have no zeros in $|z| < K, \ K \ge 1$.

Print this page