

Volume 6, Issue 4, Article 101

On the Homogeneous Functions with T	wo
Parameters and Its Monotonicity	

Authors:	Zhen-Hang Yang,
Keywords:	Homogeneous function with two parameters, \$f\$- mean with two-parameter, Monotonicity, Estimate for lower and upper bounds.
Date Received:	18/05/05
Date Accepted:	04/08/05
Subject Codes:	Primary 26B35, 26E60; Secondary 26A48, 2
Editors:	Peter S. Bullen,

Abstract:

Suppose f(x,y) is a positive homogeneous function defined on

 $\mathbb{U}(\mathbb{R}_+\times\mathbb{R}_+)\text{, call }H_f(a,b;p,q)=\left[\tfrac{f(a^p,b^p)}{f(a^q,b^q)}\right]^{\frac{1}{p-q}}\text{ homogeneous }$

function with two parameters. If f(x, y) is 2nd differentiable, then the

monotonicity in parameters p and q of $H_f(a,b;p,q)$ depend on the signs

of $I_1 = (\ln f)_{xy}$, for variable a and b depend on the sign of

 $I_{2a} = \left[(\ln f)_x \ln(y/x)
ight]_y$ and $I_{2b} = \left[(\ln f)_y \ln(x/y)
ight]_x$ respectively. As

applications of these results, a serial of inequalities for arithmetic mean, geometric mean, exponential mean, logarithmic mean, power-Exponential mean and exponential-geometric mean are deduced.

A	Download Screen PDF
内	Download Print PDF
	Send this article to a friend
Ð	Print this page

search

login