

Volume 7, Issue 1, Article 6

Some Inequalities Associated with a Linear Operator Defined for a Class of Analytic Functions

Authors:	S. R. Swamy,
Keywords:	Analytic functions, Differential subordination, Ruscheweyh derivatives, Linear operator.
Date Received:	07/03/05
Date Accepted:	25/07/05
Subject Codes:	30C45.
Editors:	Herb Silverman,

Abstract:

In this paper, we give a sufficient condition on a linear operator $L_p(a,c)g(z)$

which can guarantee that for α a complex number with $\operatorname{Re}(\alpha) > 0$,

$$\begin{split} &\operatorname{Re}\left\{(1-\alpha)\frac{L_{p}(a,c)f(z)}{L_{p}(a,c)g(z)} + \alpha\frac{L_{p}(a+1,c)f(z)}{L_{p}(a+1,c)g(z)}\right\} > \rho, \quad \rho < 1,, \\ & \text{implies} \\ &\operatorname{Re}\left\{\frac{L_{p}(a,c)f(z)}{L_{p}(a,c)g(z)}\right\} > \rho^{'} > \rho, \quad z \in E. \end{split}$$

Some interesting applications of this result are also given.

