

Volume 7, Issue 2, Article 40

	On L'Hospital-Type Rules for Monotonicity					
Authors:	losif Pinelis,					
Keywords:	L'Hospital-type rules, Monotonicity, Borwein- Borwein-Rooin ratio, Becker-Stark inequalities, Anderson-Vamanamurthy-Vuorinen inequalities, log-concavity, Maclaurin series, Hyperbolic geometry, Right-angled triangles.					
Date Received:	18/05/05					
Date Accepted:	14/11/05					
Subject Codes:	26A48, 26A51, 26A82, 26D10, 50C10, 53A35					
Editors:	Jonathan Borwein,					
Abstract:	Elsewhere we developed rules for the monotonicity pattern of the ratio $r := f/g$ of two differentiable functions on an interval (a,b) based on the monotonicity pattern of the ratio $\rho := f'/g'$ of the derivatives. Those rules					
	are applicable even more broadly than l'Hospital's rules for limits, since in general we do not require that both f and g , or either of them, tend to 0 or					
	∞ at an endpoint or any other point of $(a,b).$ Here new insight into the					
	nature of the rules for monotonicity is provided by a key lemma, which implies that, if ρ is monotonic, then $\tilde{ ho}:=r'\cdot g^2/ g' $ is so; hence, r' changes					
	sign at most once. Based on the key lemma, a number of new rules are given. One of them is as follows: Suppose that $f(a+) = g(a+) = 0$;					
	suppose also that $ ho \nearrow$ on (a,b) - that is, for some $c \in (a,b), \ ho \nearrow$ (
	$ ho$ is increasing) on (a,c) and $ ho\searrow$ on $(c,b).$ Then $r\nearrow$ or $\nearrow\searrow$ on					
	(a,b). Various applications and illustrations are given.					

Download Screen PDF

A

Download Print PDF

Send this article to a friend

Print this page

search	[advanced search]	copyright 2003	terms and conditions	login