Home

Submissions

Reviews

Volumes

RGMIA

About Us

Volume 7, Issue 3, Article 80

On The Sharpened Heisenberg-Weyl Inequality

John Michael Rassias. Authors:

Keywords: Sharpened, Heisenberg-Weyl inequality, Gram

determinant.

Date Received: 21/06/05 **Date Accepted:** 21/07/06

Subject Codes: 26, 33, 42, 60, 52.

Editors: Saburou Saitoh,

Abstract: The well-known second order moment Heisenberg-Weyl inequality (or uncertainty relation) in Fourier Analysis states: Assume that $f: \mathbb{R} \to \mathbb{C}$ is

> a complex valued function of a random real variable x such that $f \in L^2(\mathbb{R})$. Then the product of the second moment of the random real x

for $\left|f\right|^2$ and the second moment of the random real ξ for $\left|\hat{f}\right|^2$ is at least

 $E_{|f|^2} \Big/ 4\pi$, where \hat{f} is the Fourier transform of f , such that

 $\hat{f}\left(\xi\right)=\int_{\mathbf{R}}e^{-2i\pi\xi x}f\left(x\right)dx,\;f\left(x\right)=\int_{\mathbf{R}}e^{2i\pi\xi x}\hat{f}\left(\xi\right)d\xi,$ and

 $E_{|f|^2} = \int_{\mathbb{R}} |f(x)|^2 dx$.

This uncertainty relation is well-known in classical quantum mechanics. In 2004, the author generalized the afore-mentioned result to higher order moments and in 2005, he investigated a Heisenberg-Weyl type inequality without Fourier transforms. In this paper, a sharpened form of this generalized Heisenberg-Weyl inequality is established in Fourier analysis. Afterwards, an open problem is proposed on some pertinent extremum principle. These results are useful in investigation of quantum mechanics.

Download Screen PDF

Download Print PDF

Send this article to a friend

Print this page

search [advanced search] copyright 2003 terms and conditions login