New Inequalities About Convex Functions

Authors: Lazhar Bougoffa,
Keywords: Jensen's inequality, Convex functions.
Date Received: 11/06/06
Date Accepted: 15/10/06
Subject Codes: 26D15.
Editors:
Bicheng Yang,

Abstract:

If f is a convex function and x_{1}, \ldots, x_{n} or a_{1}, \ldots, a_{n} lie in its domain the following inequalities are proved

$$
\begin{aligned}
\sum_{i=1}^{n} f\left(x_{i}\right) & -f\left(\frac{x_{1}+\cdots+x_{n}}{n}\right) \\
& \geq \frac{n-1}{n}\left[f\left(\frac{x_{1}+x_{2}}{2}\right)+\cdots+f\left(\frac{x_{n-1}+x_{n}}{2}\right)+f\left(\frac{x_{n}+x_{1}}{2}\right)\right]
\end{aligned}
$$

and

$$
(n-1)\left[f\left(b_{1}\right)+\cdots+f\left(b_{n}\right)\right] \leq n\left[f\left(a_{1}\right)+\cdots+f\left(a_{n}\right)-f(a)\right]
$$

where $a=\frac{a_{1}+\cdots+a_{n}}{n}$ and $b_{i}=\frac{n a-a_{i}}{n-1}, i=1, \ldots, n$.

