

Volume 3, Issue 4, Article 63

Abstract:

Lower Bounds for the Infimum of the Spectrum of the Schrödinger Operator in  $\mathrm{R}^n\$  and the Sobolev Inequalities

| Authors:       | Ed J.M. Veling,                                                                     |
|----------------|-------------------------------------------------------------------------------------|
| Keywords:      | Optimal lower bound, Infimum spectrum,<br>Schrödinger operator, Sobolev inequality. |
| Date Received: | 15/04/02                                                                            |
| Date Accepted: | 27/05/02                                                                            |
| Subject Codes: | 26D10,26D15,47A30.                                                                  |
| Editors:       | Sever S. Dragomir,                                                                  |
|                |                                                                                     |
|                |                                                                                     |

This article is concerned with the infimum  $e_1$  of the spectrum of the Schrödinger operator  $\tau = -\Delta + q$  in  $\mathbf{R}^N$ ,  $N \geq 1$ . It is assumed that  $q_{-}=\max(0,-q)\in L^p(\mathbf{R}^N)$  , where  $p\geq 1$  if N=1 , p>N/2 if  $N\geq 2$ . The infimum  $e_1$  is estimated in terms of the  $L^p$ norm of  $q_{-}$  and the infimum  $\lambda_{N, heta}$  of a functional  $\Lambda_{N,\theta}(\nu) = \|\nabla v\|_2^{\theta} \|v\|_2^{1-\theta} \|v\|_r^{-1}$ , with  $\nu$  element of the Sobolev space  $H^1(\mathbf{R}^N)$ , where  $\theta = N/(2p)$  and  $r = 2N/(N-2\theta)$ . The result is optimal. The constant  $\lambda_{N,\theta}$  is known explicitly for N=1; for  $N\geq 2$  , it is estimated by the optimal constant  $\,C_{N,s}$  in the Sobolev inequality, where  $s = 2\theta = N/p$ . A combination of these results gives an explicit lower bound for the infimum  $e_1$  of the spectrum. The results improve and generalize those of Thirring [A Course in Mathematical Physics III. Quantum Mechanics of Atoms and Molecules, Springer, New York 1981] and Rosen [Phys. Rev. Lett., 49 (1982), 1885-1887] who considered the special case N=3. The infimum  $\lambda_{N, heta}$  of the functional  $\Lambda_{N, heta}$  is calculated numerically (for N=2,3,4,5, and 10) and compared with

the lower bounds as found in this article. Also, the results are compared with these by Nasibov [*Soviet. Math. Dokl.*, **40** (1990), 110-115].

