

Volume 5, Issue 1, Article 18

Asymptotic Behavior Of The Approximation	
Numbers Of The Hardy-Type Operator From \$	L^p\$
Into \$L^q\$	

Authors:	J. Lang, O. Mendez, A. Nekvinda,			
Keywords:	Approximation numbers, Hardy operator, Voltera operator.			
Date Received:	17/12/03			
Date Accepted:	04/02/04			
Subject Codes:	Primary 46E30; Secondary 47B38			
Editors:	Don B. Hinton,			

Abstract:

We consider the Hardy-type operator

$$(Tf)(x):=v(x)\int_a^xu(t)f(t)dt,\qquad x>a,$$

and establish properties of T as a map from $L^p(a,b)$ into $L^q(a,b)$ for

 $1 , <math>2 \le p \le q < \infty$ and 1 . The main result is that, with appropriate assumptions on <math>u and v, the approximation numbers $a_n(T)$ of T satisfy the inequality

$$c_1 \int_a^b |uv|^r dt \leq \liminf_{n \to \infty} na_n^r(T) \leq \limsup_{n \to \infty} na_n^r(T) \leq c_2 \int_a^b |uv|^r dt$$

when $1 or <math>2 \leq p \leq q < \infty$, and in the case

1 we have

$$\limsup_{n \to \infty} n a_n^r(T) \le c_3 \int_0^d |u(t)v(t)|^r dt$$

and

$$c_4 \int_0^d |u(t)v(t)|^r dt \le \liminf_{n \to \infty} n^{(1/2 - 1/q)r + 1} a_n^r(T),$$

where $r = \frac{p'q}{p'+q}$ and constants c_1, c_2, c_3, c_4 . Upper and lower estimates for the l^s and $l^{s,k}$ norms of $\{a_n(T)\}$ are also given.

search	[advanced search]	copyright 2003	terms and conditions	login