Volumes

Reviews

Home

Submissions

About Us

Volume 7, Issue 1, Article 7

Abstract:

Approximation of $\pi(x)$ by $\Re(x)$

RGMIA

Mehdi Hassani. Authors:

Keywords: Primes, Harmonic series, Gamma function,

Digamma function.

Date Received: 07/03/05 **Date Accepted:** 25/08/05

Subject Codes: 11A41, 26D15, 33B15.

Editors: Jozsef Sandor,

In this paper we find some lower and upper bounds of the form $\frac{n}{H_n-c}$ for the

function $\pi(n)$, in which $H_n = \sum_{k=1}^n rac{1}{k}$. Then, we consider

 $H(x)=\Psi(x+1)+\gamma$ as generalization of H_n , such that

 $\Psi(x) = \frac{d}{dx} \log \Gamma(x)$ and γ is Euler constant; this extension has been

introduced for the first time by J. Sándor and it helps us to find some lower and upper bounds of the form $\frac{x}{\Psi(x)-c}$ for the function $\pi(x)$ and using these

bounds, we show that $\Psi(p_n) \sim \log n$, when $n \to \infty$ is equivalent with

the Prime Number Theorem.

Download Screen PDF

Download Print PDF

Send this article to a friend

Print this page

search [advanced search] terms and conditions copyright 2003 login